Cell Motility Factors pp 178-193 | Cite as
Interleukin-6 enhances motility of breast carcinoma cells
- 7 Citations
- 49 Downloads
Summary
Interleukin-6 (IL-6) is the major systemic mediator of the early host response to infection and injury (the “acute phase response”). Furthermore, IL-6 is often detected in the peripheral circulation and in the local neoplastic tissue in cancer patients. IL-6 has distinctive effects on epithelial cells depending upon the cell type examined. IL-6 enhances proliferation of normal human keratinocytes without affecting cell morphology. In contrast, IL-6 inhibits the proliferation of ductal breast carcinoma cell lines T-47D, ZR-71-1 and MCF-7. In addition to, but independent of, the inhibition of cell proliferation, IL-6 induces a cellular phenotype in the typically epitheliod T-47D and ZR-75-1 cells, which is characterized by fibroblastoid morphology, increased cell-cell separation even within preformed colonies, decreased adherens type junction formation (desmosomes and focal adhesions), and enhanced motility. Time-lapse cinemicrography of T-47D and wild-type ZR-75-1 cells reveals increased local movement of IL-6-treated cells and also movement of these cells over considerable distances. The effects of IL-6 on breast cancer cell proliferation and motility are reversible by removal of IL-6 from the culture medium. Time-lapse cinemicrography reveals that in clone B ZR-75-1 cells, which are not sensitive to the DNA synthesis-inhibitory effect of IL-6 or to its cell-separating effect on preformed colonies, IL-6 can still block rapid readherence of post-mitotic cells to their neighbors and to the substratum leading to enhanced dispersal of cancer cells into the culture medium. In wild-type ZR-75-1 cells, 12-O-tetradecanoyl phorbol ester (TPA) exerts a cell-scattering effect on breast cancer cells without inhibiting cell proliferation. Combined treatment with IL-6 and TPA produces a cell-scattering effect that greatly exceeds in magnitude and speed the phenotypic change elicited by either reagent alone. Staurosporine blocks cell-scattering caused by TPA but not that caused by IL-6 suggesting that IL-6 and TPA elicit similar phenotypic changes in breast cancer cells via different pathways. Taken together, these findings identify a previously unrecognized property of IL-6, that of enhancing cell motility.
Keywords
Normal Human Keratinocytes Final Magnification Enhance Cell Motility Compact Coloni Phase Contrast ObjectivePreview
Unable to display preview. Download preview PDF.
References
- Battaile, R., Jourdan, M., Zhang X. G., and Klein, B. (1989) Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflection of disease severity in plasma cell dyscrasias. J. Clin. Invest. 84: 2008–2011.CrossRefGoogle Scholar
- Chen, L., Mory, Y., Zilberstein, A., and Revel, M. (1988) Growth inhibition of human breast carcinoma and leukemia/lymphoma cell lines by recombinant interferon-β2- Proc. Natl. Acad. Sci. USA 85: 8037–8041.CrossRefGoogle Scholar
- Chen, L., Shulman, L., and Revel, M. (1989) Growth inhibition of human breast cancer cell by IL-6/IFN-β2. J. Interferon. Res. 9: 5255.Google Scholar
- Content, J., DeWit, L., Pierard, D., Derynck, R., DeClercq, E., and Piers, W. (1982) Secretory proteins induced in human fibroblasts under conditions used for the production of interferon ß. Proc. Natl. Acad. Sci. USA 79: 2768–2772.CrossRefGoogle Scholar
- Content, J., DeWit, L., Poupart, P., Opdenakker, G., Van Damme, J., and Billiau, A. (1985) Induction of a 26-kDa-protein mRNA in human cells treated with interleukin-1-related, leukocyte-derived factor. Eur. J. Biochem. 152: 253–257.CrossRefGoogle Scholar
- Fridman, R., Lacal, J. C., Reich, R., Bonfil, D. R., and Ahn, C. H. (1990) Differential effects of phorbol ester on the in vivo invasiveness of malignant and non-malignant human fibroblast cells. J. Cell. Physiol. 142: 55–60.CrossRefGoogle Scholar
- Fuller, A. M., and Ritchie, D. G. (1982) A regulatory pathway for fibrinogen biosynthesis involving an indirect feedback loop. Ann. N.Y. Acad. Sci. 389: 308–322.CrossRefGoogle Scholar
- Garmen, R. D., Jacobs, K. A., Clark, S. C., and Raulet, D. H. (1987) B-cell stimulatory factor 2 (β2 interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc. Natl. Acad. Sci. USA 84: 7629–7633.CrossRefGoogle Scholar
- Gauldie, J., Richards, C., Harnish, D., Lansdorp, P., and Baumann, H. (1987) Interferon-β2/ B-cell stimulatory factor 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase response in liver cells. Proc. Natl. Acad. Sci. USA 84: 7251–7255.CrossRefGoogle Scholar
- Gopalakrishna, R., and Barsky, S. H. (1988) Tumor promoter-induced membrane-bound protein kinase C regulates hematogenous metastasis. Proc. Natl. Acad. Sci. USA 85: 612–616.CrossRefGoogle Scholar
- Grossman, R. M., Kreuger, J., Yourish, D., GraneUi-Piperno, A., Murphy, D. P., May, L. T., Küpper, T. S., Sehgal, P. B., and Gottlieb, A. (1989) Interleukin-6 (IL-6) is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. USA 86: 6367–6371.CrossRefGoogle Scholar
- Helfgott, D. C., May, L. T., Sthoeger, Z., Tamm, I., and Sehgal, P. B. (1987) Bacterial lipopolysaccharide (endotoxin) enhances expression and secretion of β2 interferon by human fibroblasts. J. Exp. Med. 166: 1300–1309.CrossRefGoogle Scholar
- Helfgott, D. C., Tatter, S. B., Santhanam, U., Clarick, R. H., Bhardwaj, N., May, L. T., and Sehgal, P. B. (1989) Multiple forms of IFN-β2/IL-6 in serum and body fluids during acute bacterial infection. J. Immunol. 142: 948–953.Google Scholar
- Hirano, T., Yasukawa, K., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S., Nakajima, K., Iwamatsu, K., Tsunasawa, S., Sakiyama, P., Matsui, H., Takahara, Y., Taniguchi, T., and Kishimoto, T. (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B-lymphoeytes to produce immunoglobulins. Nature 324: 73–76.CrossRefGoogle Scholar
- Kishimoto, T. (1989) The biology of interleukin-6. Blood 74: 1–10.Google Scholar
- Kohase, M., Henriksen-DiStefano, D., May, L. T., Vilöek, J., and Sehgal, P. B. (1986) Induction of interferon-β2 by tumor necrosis factor: A homeostatie mechanism in the control of cell proliferation. Cell 45: 659–666.CrossRefGoogle Scholar
- Kohase, M., May, L. T., Tamm, I., Vilcek, J., and Sehgal, P. B. (1987) A cytokine network in human diploid fibroblasts: Interactions of ß interferons, tumor necrosis factor, platelet-derived growth factor and interleukin-1. Mol. Cell Biol. 7: 273–280.Google Scholar
- Krueger, J. G., Krane, J. F., Carter, D. M., and Gottlieb, A. B. (1990) Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J. Invest. Derm. 94: 1355–1405.CrossRefGoogle Scholar
- Krueger, J., Ray, A., Tamm, I., and Sehgal, P. B. (1991) Expression and function of interleukin-6 in epithelial cells. J. Cell. Biochem. 45: 327–334.CrossRefGoogle Scholar
- Kushmer, I., Volanakis, J. E., and Gewürz, H. (1982) C-reactive protein and the plasma protein response to tissue injury. Ann. N.Y. Acad. Sci. 389: 1–481.CrossRefGoogle Scholar
- Loppnow, H., and Libby, P. (1990) Proliferating or interleukin-1-activated human vascular smooth muscle cells secrete copious interleukin-6. J. Clin. Invest. 85: 731–738.CrossRefGoogle Scholar
- May, L. T., Ghrayeb, J., Santhanam, U., Tatter, S. B., Sthoeger, Z., Helfgott, D. C., Chiorazzi, N., Grieninger, G., and Sehgal, P. B. (1988) Synthesis and secretion of multiple forms of β2-interferon/B-cell differentiation factor 2/hepatocyte-stimulating factor by human fibroblasts and monocytes. J. Biol. Chem. 16: 7760–7766.Google Scholar
- May, L. T., Santhanam, U., Tatter, S. B., Bhardwaj, N., Ghrayeb, J., and Sehgal, P. B. (1988) Phosphorylation of secreted forms of human β2-interferon/hepatoeyte stimulating factor/in-terleukin-6. Biochem. Biophys. Res. Commun. 152: 1144–1150.CrossRefGoogle Scholar
- May, L. T., Santhanam, U., Tatter, S. B., Ghrayeb, J., and Sehgal, P. B. (1989) Multiple forms of human interleukin-6: phosphoglycoproteins secreted by many different tissues. Ann. N.Y. Acad. Sci. 557: 114–121.CrossRefGoogle Scholar
- May, L. T., Santhanam, U., and Sehgal, P. B. (1991a) On the multimerie nature of natural human interleukin-6. J. Biol. Chem., in press.Google Scholar
- May, L. T., Shaw, J. E., Khanna, A. K., Zalriskie, J. B., and Sehgal, P. B. (1991b) Marked cell-type specific differences in glycosylation of human interleukin-6. Cytokine, 3: 204–211.CrossRefGoogle Scholar
- Ray, A., Tatter, S. B., Santhanam, U., Helfgott, D. C., May, L. T., and Sehgal, P. B. (1989) Regulation of expression of interleukin-6: Molecular studies. Ann. N.Y. Acad. Sci. 557: 353–362.CrossRefGoogle Scholar
- Revel, M., Zilberstein, A., Ruggieri, R. M., Rubinstein, M., and Chen, L. (1987) Autocrine interferons and inierfeTon-ßj. J. Interferon Res. 7: 529.CrossRefGoogle Scholar
- Ritchie, D. G. and Fuller, G. M. (1983) Hepatocyte-stimulating factor: a monocyte-derived acute-phase regulatory protein. Ann. N.Y. Acad. Sci. 408: 490–502.CrossRefGoogle Scholar
- Rosen, E. M., Meromsky, L., Goldberg, I., Bhargava, M., and Setter, E. (1990) Studies on the mechanism of scatter factor: Effects of agents that modulate intercellular signal transduction, macromolecule synthesis and cytoskeleton assembly. J. Cell. Sci. 96: 639–649.Google Scholar
- Rosen, E. M., Liu, D., Setter, E., Bhargava, M., and Goldberg, I. D. (1991) Interleukin-6 stimulates motility of vascular endothelium, in: Cell Motility Factors, ed. I.D. Goldberg, Birkhäuser Verlag, Basel, pp. 194–205. (this volume)Google Scholar
- Santhanam, U., Ghrayeb, J., Sehgal, P. B., and May, L. T. (1989) Posttranslational modifications of human interleukin-6. Arch. Biochem. Biophys. 274: 161–170.CrossRefGoogle Scholar
- Schwartz, G. K., Redwood, S. M., Ohnuma, T., Holland, J. F., Droller, M. J., and Liu, B. C.-S. (1990) Inhibition of invasion of invasive human bladder carcinoma cells by protein kinase C inhibitor staurosporine. J. Natl. Can. Inst. 82: 1753–1756.CrossRefGoogle Scholar
- Sehgal, P. B. (1990a) Interleukin-6: A regulator of plasma protein gas expression in hepatic and non-hepatic tissues. Mol. Biol. Med. 7: 117–130.Google Scholar
- Sehgal, P. B. (1990b) Interleukin-6 in infection and cancer. Proc. Soc. Exp. Biol. Med. 195: 183–191.Google Scholar
- Sehgal, P. B., May, L. T., Tamm, I., and Vilcek, J. (1987) Human ß2 interferon and B-cell differentiation factor BSF-2 are identical. Science 235: 731–732.CrossRefGoogle Scholar
- Sehgal, P. B., Helfgott, D. C., Santhanam, U., Tatter, S. B., Clarick, R. H., Ghrayeb, J., and May, L. T. (1988) Regulation of the acute phase and immune responses in viral disease: Enhanced expression of the “β2-interferon/hepatocyte stimulating factor/interleukin-6” gene in virus-infected human fibroblasts. J. Exp. Med. 167: 1951–1956.CrossRefGoogle Scholar
- Sehgal, P. B., Grieninger, G., and Tosato, G. (1989) Regulation of the acute phase and immune responses: Interleukin-6. Ann. N.Y. Acad. Sci. 557: 1–583.Google Scholar
- Shabo, v., Lotem, J., Rubinstein, M., Revel, M., Clark, S. C., Wolf, S. F., Kamen, R., and Sachs, L. (1998) The myeloid blood cell differentiation-inducing protein MGI-2A is interleukin-6. Blood 72: 2070–2073.Google Scholar
- Takenaga, K., and Takahashi, K. (1986) Effects of 12-O-tetradecanoylphorbol-13-acetate on adhesiveness and lung-colonizing ability of Lewis lung carcinoma cells. Cancer Res. 46: 375–380.Google Scholar
- Tamm, I., Cardinale, I., Krueger, J., Murphy, J. S., May, L. T., and Sehgal, P. B. (1989) Interleukin 6 decreases cell-cell association and increases motility of ductal breast carcinoma cells. J. Exp. Med. 170: 1649–1669.CrossRefGoogle Scholar
- Tamm, I., Cardinale, I., and Sehpl, P. B. (1991a) Interleukin-6 and 12-O-tetradecanoyl phorbol-13-acetate act synergistically in inducing cell-cell separation and migration of human breast carcinoma cells. Cytokine, 3: 212–223.CrossRefGoogle Scholar
- Tamm, I., Cardinale, I., and Murphy, J. S. (1991b) Decreased adherence of interleukin-6-treated breast carcinoma cells can lead to separation from neighbors after mitosis. Proc. Natl. Acad. Sci. USA, 88: 4414–4418.CrossRefGoogle Scholar
- Tosato, G., Seamon, K. B., Goldman, N. D., Sehgal, P. B., May, L. T., Washington, G. C., Jones, K. D., and Pike, S. E. (1988) Identification of a monocyte-derived human B cell growth factor as interferon-β2 (BSF-2, IL-6). Science 239: 502–504.CrossRefGoogle Scholar
- Waage, A., Brandtzaeg, P., Halstensen, A., Kierulf, P., and Espevik T. (1989) The complex pattern of cytokines in serum of patients with meningococcal septic shock. J. Exp. Med. 169: 333–339.CrossRefGoogle Scholar
- Weissenbach, J., Chernajovsky, Y., Zeevi, M., Shulman, L., Soreq, M., Nir, U., Wallach, D., Perricaudet, M., Tiollais, P., and Revel, M. (1980) Two interferon mRNAs in human fibroblasts: In vitro translation and Escherichia coli cloning studies. Proc. Natl. Acad. Sci. USA 77: 7152–7156.CrossRefGoogle Scholar
- Yoshizaki, K., Matsuda, T., Nishimoto, N., Kikutani, T., Taeho, L., Aozasa, K., Nakahata, T., Kawai, H., Tagoh, H., Komori, T., Kishimoto, S., Hirano, T., and Kishimoto, T. (1989) Pathological significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood 74: 1360–1367.Google Scholar