Advertisement

Interleukin-6 enhances motility of breast carcinoma cells

  • Pravinkumar B. Sehgal
  • Igor Tamm
Chapter
Part of the Experientia Supplementum book series (EXS, volume 59)

Summary

Interleukin-6 (IL-6) is the major systemic mediator of the early host response to infection and injury (the “acute phase response”). Furthermore, IL-6 is often detected in the peripheral circulation and in the local neoplastic tissue in cancer patients. IL-6 has distinctive effects on epithelial cells depending upon the cell type examined. IL-6 enhances proliferation of normal human keratinocytes without affecting cell morphology. In contrast, IL-6 inhibits the proliferation of ductal breast carcinoma cell lines T-47D, ZR-71-1 and MCF-7. In addition to, but independent of, the inhibition of cell proliferation, IL-6 induces a cellular phenotype in the typically epitheliod T-47D and ZR-75-1 cells, which is characterized by fibroblastoid morphology, increased cell-cell separation even within preformed colonies, decreased adherens type junction formation (desmosomes and focal adhesions), and enhanced motility. Time-lapse cinemicrography of T-47D and wild-type ZR-75-1 cells reveals increased local movement of IL-6-treated cells and also movement of these cells over considerable distances. The effects of IL-6 on breast cancer cell proliferation and motility are reversible by removal of IL-6 from the culture medium. Time-lapse cinemicrography reveals that in clone B ZR-75-1 cells, which are not sensitive to the DNA synthesis-inhibitory effect of IL-6 or to its cell-separating effect on preformed colonies, IL-6 can still block rapid readherence of post-mitotic cells to their neighbors and to the substratum leading to enhanced dispersal of cancer cells into the culture medium. In wild-type ZR-75-1 cells, 12-O-tetradecanoyl phorbol ester (TPA) exerts a cell-scattering effect on breast cancer cells without inhibiting cell proliferation. Combined treatment with IL-6 and TPA produces a cell-scattering effect that greatly exceeds in magnitude and speed the phenotypic change elicited by either reagent alone. Staurosporine blocks cell-scattering caused by TPA but not that caused by IL-6 suggesting that IL-6 and TPA elicit similar phenotypic changes in breast cancer cells via different pathways. Taken together, these findings identify a previously unrecognized property of IL-6, that of enhancing cell motility.

Keywords

Normal Human Keratinocytes Final Magnification Enhance Cell Motility Compact Coloni Phase Contrast Objective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battaile, R., Jourdan, M., Zhang X. G., and Klein, B. (1989) Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflection of disease severity in plasma cell dyscrasias. J. Clin. Invest. 84: 2008–2011.CrossRefGoogle Scholar
  2. Chen, L., Mory, Y., Zilberstein, A., and Revel, M. (1988) Growth inhibition of human breast carcinoma and leukemia/lymphoma cell lines by recombinant interferon-β2- Proc. Natl. Acad. Sci. USA 85: 8037–8041.CrossRefGoogle Scholar
  3. Chen, L., Shulman, L., and Revel, M. (1989) Growth inhibition of human breast cancer cell by IL-6/IFN-β2. J. Interferon. Res. 9: 5255.Google Scholar
  4. Content, J., DeWit, L., Pierard, D., Derynck, R., DeClercq, E., and Piers, W. (1982) Secretory proteins induced in human fibroblasts under conditions used for the production of interferon ß. Proc. Natl. Acad. Sci. USA 79: 2768–2772.CrossRefGoogle Scholar
  5. Content, J., DeWit, L., Poupart, P., Opdenakker, G., Van Damme, J., and Billiau, A. (1985) Induction of a 26-kDa-protein mRNA in human cells treated with interleukin-1-related, leukocyte-derived factor. Eur. J. Biochem. 152: 253–257.CrossRefGoogle Scholar
  6. Fridman, R., Lacal, J. C., Reich, R., Bonfil, D. R., and Ahn, C. H. (1990) Differential effects of phorbol ester on the in vivo invasiveness of malignant and non-malignant human fibroblast cells. J. Cell. Physiol. 142: 55–60.CrossRefGoogle Scholar
  7. Fuller, A. M., and Ritchie, D. G. (1982) A regulatory pathway for fibrinogen biosynthesis involving an indirect feedback loop. Ann. N.Y. Acad. Sci. 389: 308–322.CrossRefGoogle Scholar
  8. Garmen, R. D., Jacobs, K. A., Clark, S. C., and Raulet, D. H. (1987) B-cell stimulatory factor 2 (β2 interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc. Natl. Acad. Sci. USA 84: 7629–7633.CrossRefGoogle Scholar
  9. Gauldie, J., Richards, C., Harnish, D., Lansdorp, P., and Baumann, H. (1987) Interferon-β2/ B-cell stimulatory factor 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase response in liver cells. Proc. Natl. Acad. Sci. USA 84: 7251–7255.CrossRefGoogle Scholar
  10. Gopalakrishna, R., and Barsky, S. H. (1988) Tumor promoter-induced membrane-bound protein kinase C regulates hematogenous metastasis. Proc. Natl. Acad. Sci. USA 85: 612–616.CrossRefGoogle Scholar
  11. Grossman, R. M., Kreuger, J., Yourish, D., GraneUi-Piperno, A., Murphy, D. P., May, L. T., Küpper, T. S., Sehgal, P. B., and Gottlieb, A. (1989) Interleukin-6 (IL-6) is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. USA 86: 6367–6371.CrossRefGoogle Scholar
  12. Helfgott, D. C., May, L. T., Sthoeger, Z., Tamm, I., and Sehgal, P. B. (1987) Bacterial lipopolysaccharide (endotoxin) enhances expression and secretion of β2 interferon by human fibroblasts. J. Exp. Med. 166: 1300–1309.CrossRefGoogle Scholar
  13. Helfgott, D. C., Tatter, S. B., Santhanam, U., Clarick, R. H., Bhardwaj, N., May, L. T., and Sehgal, P. B. (1989) Multiple forms of IFN-β2/IL-6 in serum and body fluids during acute bacterial infection. J. Immunol. 142: 948–953.Google Scholar
  14. Hirano, T., Yasukawa, K., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S., Nakajima, K., Iwamatsu, K., Tsunasawa, S., Sakiyama, P., Matsui, H., Takahara, Y., Taniguchi, T., and Kishimoto, T. (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B-lymphoeytes to produce immunoglobulins. Nature 324: 73–76.CrossRefGoogle Scholar
  15. Kishimoto, T. (1989) The biology of interleukin-6. Blood 74: 1–10.Google Scholar
  16. Kohase, M., Henriksen-DiStefano, D., May, L. T., Vilöek, J., and Sehgal, P. B. (1986) Induction of interferon-β2 by tumor necrosis factor: A homeostatie mechanism in the control of cell proliferation. Cell 45: 659–666.CrossRefGoogle Scholar
  17. Kohase, M., May, L. T., Tamm, I., Vilcek, J., and Sehgal, P. B. (1987) A cytokine network in human diploid fibroblasts: Interactions of ß interferons, tumor necrosis factor, platelet-derived growth factor and interleukin-1. Mol. Cell Biol. 7: 273–280.Google Scholar
  18. Krueger, J. G., Krane, J. F., Carter, D. M., and Gottlieb, A. B. (1990) Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J. Invest. Derm. 94: 1355–1405.CrossRefGoogle Scholar
  19. Krueger, J., Ray, A., Tamm, I., and Sehgal, P. B. (1991) Expression and function of interleukin-6 in epithelial cells. J. Cell. Biochem. 45: 327–334.CrossRefGoogle Scholar
  20. Kushmer, I., Volanakis, J. E., and Gewürz, H. (1982) C-reactive protein and the plasma protein response to tissue injury. Ann. N.Y. Acad. Sci. 389: 1–481.CrossRefGoogle Scholar
  21. Loppnow, H., and Libby, P. (1990) Proliferating or interleukin-1-activated human vascular smooth muscle cells secrete copious interleukin-6. J. Clin. Invest. 85: 731–738.CrossRefGoogle Scholar
  22. May, L. T., Ghrayeb, J., Santhanam, U., Tatter, S. B., Sthoeger, Z., Helfgott, D. C., Chiorazzi, N., Grieninger, G., and Sehgal, P. B. (1988) Synthesis and secretion of multiple forms of β2-interferon/B-cell differentiation factor 2/hepatocyte-stimulating factor by human fibroblasts and monocytes. J. Biol. Chem. 16: 7760–7766.Google Scholar
  23. May, L. T., Santhanam, U., Tatter, S. B., Bhardwaj, N., Ghrayeb, J., and Sehgal, P. B. (1988) Phosphorylation of secreted forms of human β2-interferon/hepatoeyte stimulating factor/in-terleukin-6. Biochem. Biophys. Res. Commun. 152: 1144–1150.CrossRefGoogle Scholar
  24. May, L. T., Santhanam, U., Tatter, S. B., Ghrayeb, J., and Sehgal, P. B. (1989) Multiple forms of human interleukin-6: phosphoglycoproteins secreted by many different tissues. Ann. N.Y. Acad. Sci. 557: 114–121.CrossRefGoogle Scholar
  25. May, L. T., Santhanam, U., and Sehgal, P. B. (1991a) On the multimerie nature of natural human interleukin-6. J. Biol. Chem., in press.Google Scholar
  26. May, L. T., Shaw, J. E., Khanna, A. K., Zalriskie, J. B., and Sehgal, P. B. (1991b) Marked cell-type specific differences in glycosylation of human interleukin-6. Cytokine, 3: 204–211.CrossRefGoogle Scholar
  27. Ray, A., Tatter, S. B., Santhanam, U., Helfgott, D. C., May, L. T., and Sehgal, P. B. (1989) Regulation of expression of interleukin-6: Molecular studies. Ann. N.Y. Acad. Sci. 557: 353–362.CrossRefGoogle Scholar
  28. Revel, M., Zilberstein, A., Ruggieri, R. M., Rubinstein, M., and Chen, L. (1987) Autocrine interferons and inierfeTon-ßj. J. Interferon Res. 7: 529.CrossRefGoogle Scholar
  29. Ritchie, D. G. and Fuller, G. M. (1983) Hepatocyte-stimulating factor: a monocyte-derived acute-phase regulatory protein. Ann. N.Y. Acad. Sci. 408: 490–502.CrossRefGoogle Scholar
  30. Rosen, E. M., Meromsky, L., Goldberg, I., Bhargava, M., and Setter, E. (1990) Studies on the mechanism of scatter factor: Effects of agents that modulate intercellular signal transduction, macromolecule synthesis and cytoskeleton assembly. J. Cell. Sci. 96: 639–649.Google Scholar
  31. Rosen, E. M., Liu, D., Setter, E., Bhargava, M., and Goldberg, I. D. (1991) Interleukin-6 stimulates motility of vascular endothelium, in: Cell Motility Factors, ed. I.D. Goldberg, Birkhäuser Verlag, Basel, pp. 194–205. (this volume)Google Scholar
  32. Santhanam, U., Ghrayeb, J., Sehgal, P. B., and May, L. T. (1989) Posttranslational modifications of human interleukin-6. Arch. Biochem. Biophys. 274: 161–170.CrossRefGoogle Scholar
  33. Schwartz, G. K., Redwood, S. M., Ohnuma, T., Holland, J. F., Droller, M. J., and Liu, B. C.-S. (1990) Inhibition of invasion of invasive human bladder carcinoma cells by protein kinase C inhibitor staurosporine. J. Natl. Can. Inst. 82: 1753–1756.CrossRefGoogle Scholar
  34. Sehgal, P. B. (1990a) Interleukin-6: A regulator of plasma protein gas expression in hepatic and non-hepatic tissues. Mol. Biol. Med. 7: 117–130.Google Scholar
  35. Sehgal, P. B. (1990b) Interleukin-6 in infection and cancer. Proc. Soc. Exp. Biol. Med. 195: 183–191.Google Scholar
  36. Sehgal, P. B., May, L. T., Tamm, I., and Vilcek, J. (1987) Human ß2 interferon and B-cell differentiation factor BSF-2 are identical. Science 235: 731–732.CrossRefGoogle Scholar
  37. Sehgal, P. B., Helfgott, D. C., Santhanam, U., Tatter, S. B., Clarick, R. H., Ghrayeb, J., and May, L. T. (1988) Regulation of the acute phase and immune responses in viral disease: Enhanced expression of the “β2-interferon/hepatocyte stimulating factor/interleukin-6” gene in virus-infected human fibroblasts. J. Exp. Med. 167: 1951–1956.CrossRefGoogle Scholar
  38. Sehgal, P. B., Grieninger, G., and Tosato, G. (1989) Regulation of the acute phase and immune responses: Interleukin-6. Ann. N.Y. Acad. Sci. 557: 1–583.Google Scholar
  39. Shabo, v., Lotem, J., Rubinstein, M., Revel, M., Clark, S. C., Wolf, S. F., Kamen, R., and Sachs, L. (1998) The myeloid blood cell differentiation-inducing protein MGI-2A is interleukin-6. Blood 72: 2070–2073.Google Scholar
  40. Takenaga, K., and Takahashi, K. (1986) Effects of 12-O-tetradecanoylphorbol-13-acetate on adhesiveness and lung-colonizing ability of Lewis lung carcinoma cells. Cancer Res. 46: 375–380.Google Scholar
  41. Tamm, I., Cardinale, I., Krueger, J., Murphy, J. S., May, L. T., and Sehgal, P. B. (1989) Interleukin 6 decreases cell-cell association and increases motility of ductal breast carcinoma cells. J. Exp. Med. 170: 1649–1669.CrossRefGoogle Scholar
  42. Tamm, I., Cardinale, I., and Sehpl, P. B. (1991a) Interleukin-6 and 12-O-tetradecanoyl phorbol-13-acetate act synergistically in inducing cell-cell separation and migration of human breast carcinoma cells. Cytokine, 3: 212–223.CrossRefGoogle Scholar
  43. Tamm, I., Cardinale, I., and Murphy, J. S. (1991b) Decreased adherence of interleukin-6-treated breast carcinoma cells can lead to separation from neighbors after mitosis. Proc. Natl. Acad. Sci. USA, 88: 4414–4418.CrossRefGoogle Scholar
  44. Tosato, G., Seamon, K. B., Goldman, N. D., Sehgal, P. B., May, L. T., Washington, G. C., Jones, K. D., and Pike, S. E. (1988) Identification of a monocyte-derived human B cell growth factor as interferon-β2 (BSF-2, IL-6). Science 239: 502–504.CrossRefGoogle Scholar
  45. Waage, A., Brandtzaeg, P., Halstensen, A., Kierulf, P., and Espevik T. (1989) The complex pattern of cytokines in serum of patients with meningococcal septic shock. J. Exp. Med. 169: 333–339.CrossRefGoogle Scholar
  46. Weissenbach, J., Chernajovsky, Y., Zeevi, M., Shulman, L., Soreq, M., Nir, U., Wallach, D., Perricaudet, M., Tiollais, P., and Revel, M. (1980) Two interferon mRNAs in human fibroblasts: In vitro translation and Escherichia coli cloning studies. Proc. Natl. Acad. Sci. USA 77: 7152–7156.CrossRefGoogle Scholar
  47. Yoshizaki, K., Matsuda, T., Nishimoto, N., Kikutani, T., Taeho, L., Aozasa, K., Nakahata, T., Kawai, H., Tagoh, H., Komori, T., Kishimoto, S., Hirano, T., and Kishimoto, T. (1989) Pathological significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood 74: 1360–1367.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1991

Authors and Affiliations

  • Pravinkumar B. Sehgal
    • 1
  • Igor Tamm
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations