Molecular analysis of amoeboid chemotaxis: Parallel observations in amoeboid phagocytes and metastatic tumor cells

  • Joan G. Jones
  • Jeffrey Segall
  • John Condeelis
Part of the Experientia Supplementum book series (EXS, volume 59)


Metastasis is a multistep process in which amoeboid Chemotaxis plays a key role in the movement of tumor cells into and out of vessels. On a molecular level, much of what is known about amoeboid Chemotaxis has been learned through work with Dictyostelium discoideum, a lower eukaryotic amoeboid phagocyte. One of the first and most crucial events to occur in the actin cytoskeleton following chemotactic stimulation is activation of actin nucleation. This is followed by incorporation of specific actin cross-linking proteins into the cytoskeleton, proteins which are implicated in the extension of pseudopods and filopods. Together, these events have been termed the Cortical Expansion Model for amoeboid Chemotaxis. Detailed biochemical analysis has implicated a new actin-capping protein and has shown that one of the cross-linking proteins is Elongation Factor la, suggesting a link between Chemotaxis and growth control. Preliminary data from parallel studies on neoplastic cells are presented.


Actin Filament Actin Cytoskeleton Actin Polymerization Actin Binding Protein Dictyostelium Discoideum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auerbach, R., Lu, W. C., Pardon, E., Gumkowski, F., Kaminska, G., and Kaminski, M. (1987) Specificity of adhesion between murine tumor cells and capillary endothehum: an in vitro correlate of preferential metastasis in vivo. Cancer Res. 47: 1492–1496.Google Scholar
  2. Aznavoorian, S., Stracke, M. L., Krutzsch, H., Schiffman, E., and Liotta, L. A. (1990) Signal transduction for Chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 110: 1427–1438.CrossRefGoogle Scholar
  3. Blood, C. H., Sasse, J., Brodt, P., and Zetter, B. R. (1988) Identification of a tumor cell receptor for VGVAPG, an elastin derived chemotactic peptide. J. Cell Biol. 107: 1987–1993.CrossRefGoogle Scholar
  4. Blood, C. H., and Zetter, B. R. (1989) Membrane-bound protein kinase C modulates receptor affinity and chemotactic responsiveness of Lewis lung carcinoma sublines to an elastin-derived peptide. J. Biol. Chem. 264: 10614–10620.Google Scholar
  5. Bonner, J. T., Barkley, D. S., Hall, E. M., Konign, T. M., Mason, J. W., O’Keefe, G. 3rd, and Wolfe, P. B. (1969) Acrasin, acrasinase, and the sensitivity to acrasin in Dictyostelium discoideum. Dev. Biol. 20: 72–87.CrossRefGoogle Scholar
  6. Bresnick, A., Warren, V., and Condeehs, J. (1989) Identification of a short sequence essential for actin binding by Dictyostehum ABP-120. J. Biol. Chem. 265: 9236–9240.Google Scholar
  7. Brodt, P. (1986) Characterization of two highly metastatic variants of Lewis lung carcinoma with different organ specificities. Cancer Res. 46: 2442–2448.Google Scholar
  8. Chelberg, M. K., McCarthy J. B., Skubitz, A. P. M., Furcht, L. T., and Tsilibary E. C. (1990) Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J. Cell Biol. 111: 262–270.CrossRefGoogle Scholar
  9. Condeelis, J., and Taylor, D. (1977) Control of gelation, solation and contraction in extracts from Dictyostelium discoideum. J. Cell Biol. 74: 901–927.CrossRefGoogle Scholar
  10. Condeelis, J., Vahey, M., Carboni, J., Demey, J., and Ogihara, S. (1984) Properties of the 120,000 and 95,000 dalton actin binding proteins from Dictyostelium discoideum and their possible functions in assembling the cytoplasmic matrix. J. Cell Biol. 99: 119s-126s.CrossRefGoogle Scholar
  11. Condeelis, J., Hall, A., Bresnick, A., Warren, V., Hock, R., Bennett, H., and Ogihara, S. (1988) Actin polymerization and pseudopod extension during amoeboid Chemotaxis. Cell Mot. Cytoskel. 10: 77–90.CrossRefGoogle Scholar
  12. Condeelis, J., and Hall, A. (1990) Measurement of actin polymerization and cross-linking in agonist stimulated cells. Meth. Enzymol. 196: 486–496.CrossRefGoogle Scholar
  13. Dano, K., Andreasen, P. A., Grondahl-Hansen, J., Kristensen, P., Nielsen, L. S., and Skriver, L. (1985). Plasminogen activators, tissue degradation, and cancer. Adv. Cancer. Res. 44: 139–266.CrossRefGoogle Scholar
  14. Demma, M., Warren, V., Hock, R., Dharmawardhane, S., and Condeelis, J. (1990) Isolation of an abundant 50,000 dalton actin filament bundling protein from Dictyostelium amoebae. J. Biol. Chem. 265: 2286–2291.Google Scholar
  15. Detmers, P., Goodenough, U., and Condeelis, J. (1983) Elongation of the fertilization tubules in Chlamydomonas: New observations on the core microfilaments and the effect of transient intracellular signals on their structural integrity. J. Cell. Biol. 97: 522–532.CrossRefGoogle Scholar
  16. Devreotes P. N., and Zigmond, S. H. (1988) Chemotaxis in eukaryotic cells: A focus on leukocytes and Dictyostelium. Ann. Rev. Cell Biol. 4: 649–686.CrossRefGoogle Scholar
  17. Dharmawardhane, S., Warren, V., Hall, A., and Condeelis, J. (1989a) Changes in the association of actin binding proteins with the actin cytoskeleton during stimulation of Dictyostelium discoideum. Cell Motil. Cytoskel. 13: 57–63.CrossRefGoogle Scholar
  18. Dharmwardhane, S., Demma, M., Warren, V., and Condeelis, J. (1989b) Regulation of ABP-50, an actin-binding protein from Dictyostelium discoideum. J. Cell Biol. 109: 273a.Google Scholar
  19. Eckert, B., Warren, V., and Rubin, R. (1977) Structural and biochemical aspects of cell motility in amebas of Dictyostelium discoideum. J. Cell Biol. 72: 339–350.CrossRefGoogle Scholar
  20. Hall, A., Schlein, A., and Condeelis, J. (1988) Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in amoeboid cells. J. Cell Biochem. 37: 285–299.CrossRefGoogle Scholar
  21. Hall, A. L., Warren, V., Dharmawardhane S., and Condeelis, J. (1989a) Identification of actin nucleation activity and polymerization inhibitor in amoeboid cells: Their regulation by chemotactic stimulation. J. Cell Biol. 109: 2207–2213.CrossRefGoogle Scholar
  22. Hall, A. L., Warren, V., and Condeelis J. (1989b). Transduction of the chemotactic signal to the actin cytoskeleton of Dictyostelium discoideum. Dev. Biol. 136: 517–525.CrossRefGoogle Scholar
  23. Inoue, S., and Tilney, L. (1982) Acrosomal reaction of thyone sperm. I. Changes in the sperm head visualized by high resolution video microscopy. J. Cell. Biol. 93: 812–819.CrossRefGoogle Scholar
  24. Juliano, R. L. (1987) Membrane receptors for extracellular matrix macromolecules: relationship to cell adhesion and tumor metastasis. Biochim. Biophys. Acta 907: 261–278.Google Scholar
  25. Kao R. T., and Stern, R. (1986) Elastases in human breast carcinoma cell lines. Cancer Res. 46: 1355–1358.Google Scholar
  26. Knecht, D., Kern, H., Wessels, D., Soil, D., Cox, D., and Condeelis, J. (1990) Targeted disruption of the ABP-120 gene leads to cells with altered motility. J. Cell Biol. 111: 7a.Google Scholar
  27. Kumagai, A., Pupillo, M., Gundersen, R., Miake-Lye, R., Devreotes, P., and Firtel, R. (1989) Regulation and function of G-alpha protein subunits in Dictyostelium. Cell 57: 265–275.CrossRefGoogle Scholar
  28. Liotta, L. A., Kleinerman, J., and Saidel, G. M. (1974) Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34: 997–1004.Google Scholar
  29. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., and Shafie, S. (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67–68.CrossRefGoogle Scholar
  30. Liotta, L. A., Mandler, R., Murano, G., Katz, D. A., Gordon, R. K., Chiang, P. K., and Schiffmann, E. (1986) Tumor autocrine motility factor. Proc. Nat. Acad. Sci. USA 83: 3302–3306.CrossRefGoogle Scholar
  31. Liotta, L. A., and Schiffman, E. (1988) Tumour motility factors. Cancer Surv. 7: 632–652.Google Scholar
  32. Liotta, L. A., and Stetler-Stevenson, W. (1989) Metalloproteinases and mahgnant conversion: does correlation imply causahty? J. Natl. Cancer Inst. 81: 556–557.CrossRefGoogle Scholar
  33. Liu, G., and Newell, P. (1988) Evidence that cGMP regulates myosin interaction with the cytoskeleton during Chemotaxis of Dictyostelium. J. Cell Sci. 90: 123–129.Google Scholar
  34. Magro, C., Orr, F. W., Manishen, W. J., Sivamanthan, K., and Mokashi, S. S. (1985) Adhesion, Chemotaxis, and aggregation of Walker carcinosarcoma cells in response to products of resorbing bone. J. Natl. Cancer Inst. 74: 829–838.Google Scholar
  35. McCarthy, J. B., Basara, M. L., Palm, S. L., Sas, D. F., and Furcht, L. T. (1985) The role of cell adhesion proteins - laminin and fibronectin - in the movement of malignant and metastatic cells. Cancer Metastasis Rev. 4: 125–152.CrossRefGoogle Scholar
  36. McCarthy J. B., Hagen, S. T., and Furcht, L. T. (1986) Human fibronectin contains distinct adhesion — and motility-promoting domains for metastatic melanoma cells. J. Cell. Biol. 102: 179–188.CrossRefGoogle Scholar
  37. Mensing H., Albini, A., Krieg, T., Pontz, B. F., and Muller, P. K. (1984) Enhanced Chemotaxis of tumor-derived and virus-transformed cells to fibronectin and fibroblast-conditioned medium. Int. J. Cancer 33: 43–48.CrossRefGoogle Scholar
  38. Moldave, K. (1985) Eukaryotic protein synthesis. Ann. Rev. Biochem. 54: 1109–1149.CrossRefGoogle Scholar
  39. Mundy, G. R., De Martino, S., and Rowe, D. W. (1981) Collagen and collagen-derived fragments are chemotactic for tumor cells. J. Clin. Invest. 68: 1102–1105.CrossRefGoogle Scholar
  40. Nakajima, M., Irimura, T., Di Ferrante, D., Di Ferrante, N., and Nicolson, G. L. (1983) Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science 220: 611–613.CrossRefGoogle Scholar
  41. Noegel, A., Rapp, S., Lottspeich, F., Schleicher, M., and Stewart, M. (1989) The Dictyostelium gelation factor shares a putative actin binding site with A-actinins and dystrophin and also has a rod domain containing six 100 residue motifs that appear to have a cross-beta conformation. J. Cell Biol. 109: 607–618.CrossRefGoogle Scholar
  42. Ogihara, S., Carboni, J., and Condeelis, J. (1988) Electron miroscopic localization of Myosin II and ABP-120 in the cortical actin matrix of Dictyostelium amoebae using IgG-gold conjugates. Dev. Gen. 9: 505–520.CrossRefGoogle Scholar
  43. Oster, G. (1984) On the crawling of cells. J. Embryol. Exp. Morph. 83 Supplement: 329–364.Google Scholar
  44. Oster, G. (1988) Biophysics of the leading lamella. Cell Mot. Cytoskel. 10: 164–171.CrossRefGoogle Scholar
  45. Sauterer, R. A., Eddy, R. J., Hall, A. L., and Condeehs, J. S. (1990) Purification and characterization of aginactin, a newly identified agonist-regulated capping protein from Dictyostelium amoebae. J. Cell Biol. 111: 162a.Google Scholar
  46. Segall, J. (1988) Quantification of motility and area changes of Dictyostelium discoideum amoebae in response to chemoattractants. J. Muse. Res. Cell. Mot. 9: 481–490.CrossRefGoogle Scholar
  47. Segall, J. (1990a) Mutational studies of amoeboid Chemotaxis using Dictyostelium discoideum. In: J. Armitage and J. Lackie (eds), Biology of the Chemotactic Responses. Cambridge University Press, Cambridge.Google Scholar
  48. Segall, J. (1990b) The role of GMP in chemotactic responses of Dictyosteium amoebae. In prep.Google Scholar
  49. Senior, R. M., Griffin, G. L., Mecham, R. P., Wrenn, D. S., Prasdad, K. U., and Urry, D. W. (1984) Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J. Cell Biol. 99: 870–874.CrossRefGoogle Scholar
  50. Sloane, B. F., Honn, K. V., Sadler, J. G., Turner, W. A., Kimpson, J. J., and Taylor, J. D. (1982) Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Res. 42: 980–986.Google Scholar
  51. Stracke, M. L. Engel, J. D., Wilson, L. W., Rechler, M. M., Liotta, L. A., and Schiffman, E. (1989) The type I IGF receptor is a motility receptor in human melanoma cells. J. Biol. Chem. 264: 21544–21549.Google Scholar
  52. Tilney, L., and Inoue, S. (1982) Acrosomal reaction of thyone sperm II. The kinetics and mechanisms of acrosomal process elongation. J. Cell Biol. 93: 820–827.CrossRefGoogle Scholar
  53. Trinkus, J. (1984) Cells into Organs: The Forces that Shape the Embryo, “2nd ed. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  54. Vlodavsky, I., Fuks, Z., Bar-Ner, M., Ariav, Y., and Schirrmacher, V. (1983) Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res. 43: 2704–2711.Google Scholar
  55. Weiss, L., Orr, F. W., and Honn, K. V. (1989) Interactions between cancer cells and the micro vasculature: a rate-regulator for metastasis. Clin. Exp. Metastasis 7: 127–67.CrossRefGoogle Scholar
  56. Wessels, D. (1990) The role of actin and myosin in intracellular movement, cell motihty and cell shape in Dictyostelium Chemotaxis. Ph.D. thesis. University of Iowa.Google Scholar
  57. Wessels, D., Schroeder, N., Voss, E., Hall, A., Condeehs, J., and Soil, D. (1989) cAMP-mediated inhibition of intracellular particle movement and actin reorganization in Dictyostelium. J. Cell. Biol. 109: 2841–2851.CrossRefGoogle Scholar
  58. Wolosewick, J., and Condeelis, J. (1986) Fine structure of gels prepared from an actin binding protein and actin. J. Cell. Biochem. 30: 227–243.CrossRefGoogle Scholar
  59. Yang, F., Demma, M., Warren, V., Dharwardhane, S., and Condeelis, J. (1990) Identification of an actin binding protein from Dictyostelium as elongation factor la. Nature: 347: 494–496.CrossRefGoogle Scholar
  60. Yusa, T., Blood, C. H., and Zetter, B. R. (1989) Tumor cell interactions with elastin: implications for pulmonary metastases. Am. Rev. Respir. Dis. 140: 1458–1462.CrossRefGoogle Scholar
  61. Zeydel, M., Nakagawa, S., Biempica, L., and Takahashi, S. (1986) Collagenase and elastase production by mouse mammary adenocarcioma primary cultures and cloned cells. Cancer Res. 46: 6438–6445.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1991

Authors and Affiliations

  • Joan G. Jones
    • 1
  • Jeffrey Segall
    • 2
  • John Condeelis
    • 2
  1. 1.Department of PathologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations