Skip to main content

Presynaptic Nicotine-Gated Channels Potentiate Transmission at ACh and Glutamate-Mediated Synapses

  • Chapter
Effects of Nicotine on Biological Systems II

Part of the book series: Advances in Pharmacological Sciences ((APS))

Summary

Examination of specific cholinergic and glutamatergic synapses reveals that nanomolar concentrations of nicotine potentiate both spontaneous and evoked transmission. Analysis of miniature excitatory synaptic currents (mepsc) before and after synaptic application of nicotine indicates that presynaptic changes underlie the synaptic facilitation, since nicotine increases mepsc frequency by more than 10 fold without altering the amplitude of the unit mode of mepsc histograms. Image analysis of changes in presynaptic [Ca]int, as well as pharmacological and antisense-mediated nicotinic acetylcholine receptor (nAChR) subunit deletion experiments suggest that synaptic transmission is potentiated by direct activation of high affinity presynaptic nAChRs that include the α7 subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke PBS, Pert A. Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopamine neurons. Brain Research. 1985; 348: 355–358.

    Article  PubMed  CAS  Google Scholar 

  2. Wonnacott S, Drasdo A, Sanderson E, Rowell P. Presynaptic nicotinic receptors and the modulation of transmitter release. Ciba-Found-Symp. 1990; 152: 87–101.

    PubMed  CAS  Google Scholar 

  3. Vidal C, Changeux JP. Pharmacological profile of nicotinic acetylcholine receptors in the rat prefrontal cortex: an electrophysiological study in slice preparation Neurosci. 1989; 29: 261–270.

    CAS  Google Scholar 

  4. Lena C, Changeux J-P, Mulle C. Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J. Neurosci. 1993; 13: 2680–88.

    PubMed  CAS  Google Scholar 

  5. Role LW. Neural regulation of acetylcholine sensitivity of embryonic sympathetic neurons. Proc. Natl. Acad. Sci. USA 1988; 85: 2825–2829.

    Article  PubMed  CAS  Google Scholar 

  6. Gardette R, Listerud MD, Brussaard AB, Role LW. Developmental changes in transmitter sensitivity and synaptic transmission in embryonic chicken sympathetic neurons innervated in vitro. Dev. Biol. 1991; 147: 83–95.

    Article  PubMed  CAS  Google Scholar 

  7. Brussard AB, Yang X, Doyle JP, Huck S, Role LW. Developmental regulation of multiple nicotinic AChR channel subtypes in embryonic chick habenula neurons: Contributions of both the a2 and a4 subunit genes. Pflugers Archiv. 1994; in press.

    Google Scholar 

  8. Hammil OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981; 391: 85–100.

    Article  Google Scholar 

  9. Moss BL, Schuetze SM, Role LW. Functional properties and developmental regulation of nicotinic acetylcholine receptors on embryonic chicken sympathetic neurons. Neuron 1989; 3: 597–607.

    Article  PubMed  CAS  Google Scholar 

  10. Yu C, Brussaard AB, Yang X, Listerud M, Role LW. Uptake of antisense oligo-nucleotides and functional block of AChR subunit gene expression in primary embryonic neurons. Dev. Genetics. 1993; 14: 296–304.

    Article  CAS  Google Scholar 

  11. Listerud M, Brussaard AB, Devay P, Colman DR, Role LW. Functional contribution of neuronal AChR subunits by antisense oligonucleotides. Science 1991; 254: 1518–21.

    Article  PubMed  CAS  Google Scholar 

  12. McGehee D, Heath M, Role LW. Potentiation of fast excitatory transmission in the CNS by presynaptic nicotinic AChRs. (1994, submitted to Science.)

    Google Scholar 

  13. Brown DA, Docherty RJ, Halliwell JV. Chemical transmission in the rat interpeduncular nucleus in vitro. J. Physiol. 1893; 341: 655–670.

    Google Scholar 

  14. Brown DA, Docherty RJ, Halliwell JV. The action of cholinomimetric substances on impulse conduction in the habenulo-interpeduncular pathway of the rat in vitro. J. Physiol. 1984; 353: 101–109.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

McGehee, D., Role, L.W. (1995). Presynaptic Nicotine-Gated Channels Potentiate Transmission at ACh and Glutamate-Mediated Synapses. In: Clarke, P.B.S., Quik, M., Adlkofer, F., Thurau, K. (eds) Effects of Nicotine on Biological Systems II. Advances in Pharmacological Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7445-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7445-8_15

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7447-2

  • Online ISBN: 978-3-0348-7445-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics