Skip to main content

Abstract

With the advent of high-speed digital computers came an interest in methods of computing algebraic rational uniform approximations. A major incentive for this interest was the need of computer subroutines for the evaluation of the elementary functions [2, 3, 17, 27, 46]. These approximations continue to have significant applications in the approximation of data sets and complicated mathematical functions. In fact, for one-dimensional data sets, the general concensus is that one should use either a piecewise polynomial fit or a rational fit. In view of this and because of interest in the problem itself many researchers have studied the problem of computation of rational fits. At present two algorithms are generally viewed as being the most effective. They are the Remes algorithm [26, 47, 48, 50] and the differential correction algorithm [4, 14, 15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Andersson, Approximation of e−x by rational functions with concentrated negative poles, J. Approx. Theory 32 (1981), 85–95.

    Article  Google Scholar 

  2. M. Andrews, B. Eisenberg, S. F. McCormick and G. D. Taylor, Evaluation of functions on microcomputers: Rational approximation of the k-th roots, Int. J. Comput. and Math. with Appl. 5 (1979), 163–169.

    Article  Google Scholar 

  3. M. Andrews, D. Jaeger, S. F. McCormick and G. D. Taylor, Evaluation of functions on microcomputers: Exp(x), Int. J. Comput. and Math. with Appl. 7 (1981), 503–508.

    Article  Google Scholar 

  4. I. Barrodale, M. J. D. Powell and F. D. K. Roberts, The differential correction algorithm for rational ℓ-approximation, SIAM J. Numer. Anal. 9 (1972), 493–504.

    Article  Google Scholar 

  5. I. Barrodale, F. D. K. Roberts and K. B. Wilson, An efficient computer implementation of the differential correction algorithm for rational approximation, Manitoba Conf. on Numerical Mathematics and Computing, 1977, U. of Victoria Tec. Rep. DM-115-IR, 1978, pg. 1–21.

    Google Scholar 

  6. I. Barrodale, Best approximation of complex-valued data, Proc. 7th Biennial Conf., U. of Dundee, Lecture Notes in Math., Vol. 630, Springer, Berlin, 1978, pgs. 14–22.

    Google Scholar 

  7. I. Barrodale and F. D. K. Roberts, Best approximation by rational functions, Proc. 3rd Manitoba Conf. on Numer. Methods, U. of Manitoba, Winnipeg, Manitoba, Canada, 1973, pgs. 3–29.

    Google Scholar 

  8. G. G. Belford and J. F. Burkhalter, A differential correction algorithm for exponential curve fitting, Tech. Rep. UIUC-CAC-73–92, Computer Center, U. of Ill., Urbana, 1973.

    Google Scholar 

  9. D. Belogus and N. Liron, DCR2: An improved algorithm for ℓ rational approximation on intervals, Numer. Math. 31 (1978), 17–29.

    Article  Google Scholar 

  10. H.-P. Blatt, Rationale Tschebysheff-Approximation über unbeschränkten Intervallen, Numer. Math. 27 (1977), 179–190.

    Article  Google Scholar 

  11. P. B. Borwein, Rational approximations with real poles to e−x and xn, J. Approx. Theory 38 (1983), 279–283.

    Article  Google Scholar 

  12. D. Braess, Die Konstruktion der Tschebyscheff-Approximierenden bei der Anpassung mit Exponentialsummen, J. Approx. Theory 3 (1970), 261–273.

    Article  Google Scholar 

  13. B. L. Chalmers, E. H. Kaufman, Jr., D. J. Leeming and G. D. Taylor, Uniform reciprocal approximation subject to linear constraints, J. Approx. Theory 41 (1984), 201–216.

    Article  Google Scholar 

  14. E. W. Cheney and H. L. Loeb, Two new algorithms for rational approximation, Numer. Math. 3 (1961), 72–75.

    Google Scholar 

  15. E. W. Cheney and H. L. Loeb, On rational Chebyshev approximation, Numer. Math. 4 (1962), 124–127.

    Article  Google Scholar 

  16. E. W. Cheney and H. L. Loeb, Generalized rational approximation, J. SIAM Numer. Anal. Ser. B, 1 (1964), 11–25.

    Google Scholar 

  17. W. J. Cody, Jr., and W. Waite, Software Manual for the Elementary Functions, Prentice-Hall, Englewood Cliffs, NJ, 1980.

    Google Scholar 

  18. W. J. Cody, G. Meinardus and R. S. Varga, Chebyshev rational approximations to e−x on [0, ∞) and applications to heat-conduct ion problems, J. Approx. Theory 2 (1969), 50–65.

    Article  Google Scholar 

  19. G. Cortelazzo and M. R. Lightner, Simultaneous design in both magnitude and group-delay of IIR and FIR filters: Problems and results, Proc. IEEE Int. Conf. on Acoust., Sp. and Sig. Proc., April (1983), 201–204.

    Google Scholar 

  20. G. Cortelazzo and M. R. Lightner, The use of multiple criterion optimization for frequency domain design of non-causal IIR filters, Proc. IEEE Int. Conf. on Acoust., Sp. and Sig. Proc, ICASSP82, Paris (1982), 1813–1816.

    Google Scholar 

  21. S. N. Dua and H. L. Loeb, Further remarks on the differential correction algorithm, SIAM J. Numer. Anal., 10 (1973), 123–126.

    Article  Google Scholar 

  22. D. E. Dudgeon, Recursive filter design using differential correction, IEEE Trans. Acoust., Sp. and Sig. Proc. ASSP-22 (1974), 443–448.

    Google Scholar 

  23. D. E. Dudgeon, Two-dimensional recursive filter design using differential correction, IEEE Trans. on Acoust., Sp. and Sig. Proc., ASSP-23 (1975), 264–267.

    Google Scholar 

  24. C. B. Dunham, Stability of differential correction for rational Chebyshev approximation, SIAM J. Numer. Anal. 17 (1980), 639–640.

    Article  Google Scholar 

  25. B. D. Eldredge and D. D. Warner, An implementation of the differential correction, Computer Science Technical Report #48, Bell Laboratories, Murray Hill, NJ, 1976.

    Google Scholar 

  26. W. Fraser and J. F. Hart, On the computation of rational approximations to continuous functions, Comm. Assoc. Comput. Mach. 5 (1962), 401–403.

    Google Scholar 

  27. J. F. Hart, E. W. Cheney, C. L. Lawson, J. H. Maehly, C. K. Mesztenyi, J. R. Rice, H. C. Thatcher, Jr., and C. Witzgall, Computer Approximations, Wiley, New York, 1968.

    Google Scholar 

  28. E. H. Kaufman, Jr. and G. D. Taylor, Uniform rational approximation of functions of several variables, Int. J. Numer. Methods Engrg., 9 (1975), 297–323.

    Article  Google Scholar 

  29. E. H. Kaufman, Jr., D. J. Leeming and G. D. Taylor, Uniform rational approximation by differential correction and Remes-differential correction, Int. J. Numer. Methods Engrg. 17 (1981), 1273–1280.

    Article  Google Scholar 

  30. E. H. Kaufman, Jr., D. J. Leeming and G. D. Taylor, A combined Remes-differential correction algorithm for rational approximation: experimental results, Comp. and Math. with Appls. 6 (1980), 155–160.

    Article  Google Scholar 

  31. E. H. Kaufman, Jr., D. J. Leeming and G. D. Taylor, A combined Remes-differential correction algorithm for rational approximation, Math. Comput. 32 (1978), 233–242.

    Article  Google Scholar 

  32. E. H. Kaufman, Jr., The behavior of differential correction in difficult situations, preprint, 16 pg.

    Google Scholar 

  33. E. H. Kaufman, Jr., S. F. McCormick and G. D. Taylor, An adaptive differential-correction algorithm, J. Approx. Theory 37 (1983), 197–211.

    Article  Google Scholar 

  34. E. H. Kaufman, Jr., S. F. McCormick and G. D. Taylor, Uniform rational approximation on large data sets, Int. J. Numer. Methods Engrg. 18 (1982), 1569–1575.

    Article  Google Scholar 

  35. E. H. Kaufman, Jr. and G. D. Taylor, An application of a restricted range version of the differential correction algorithm to the design of digital systems, Int’l. Ser. Numer. Math. 30 (1976), 207–232.

    Google Scholar 

  36. E. H. Kaufman, Jr., and G. D. Taylor, Uniform approximation by rational functions having restricted denominators, J. Approx. Theory 32 (1981), 9–26.

    Article  Google Scholar 

  37. E. H. Kaufman, Jr., D. J. Leeming and G. D. Taylor, Approximation on [0, ∞) by reciprocals of polynomials with nonnegative coefficients, J. Approx. Theory 40 (1984), 29–44.

    Article  Google Scholar 

  38. E. H. Kaufman, Jr., D. J. Leeming and G. D. Taylor, Approximation on subsets of [0, ∞) by reciprocals of polynomials, Approx. Theory IV, L. L. Schumaker, ed., Acad. Press, New York, 1983, pgs. 553–559.

    Google Scholar 

  39. E. H. Kaufman, Jr. and G. D. Taylor, Uniform approximation with rational functions having negative poles, J. Approx. Theory 4 (1978), 364–378.

    Article  Google Scholar 

  40. E. H. Kaufman, Jr. and G. D. Taylor, Best rational approximations with negative poles to e −x on [0, ∞), Padé and Rational Approximations: Theory and Applications, Acad. Press, NY, 1977, pgs. 413–425.

    Google Scholar 

  41. E. H. Kaufman, Jr. and G. D. Taylor, An application of linear programming to rational approximation, Rocky Mtn.J.of Math. 4 (1974), 371–373.

    Article  Google Scholar 

  42. E. H. Kaufman, Jr., D. J. Leaning and G. D. Taylor, Uniform rational approximation on subsets of [0, ∞], preprint.

    Google Scholar 

  43. C. M. Lee and F. D. K. Roberts, A comparison of algorithms for rational ℓ approximation, Math. Comp. 27 (1973), 111–121.

    Google Scholar 

  44. H. L. Loeb, Approximation by generalized rationals, J. SIAM Numer.Anal. 3 (1966), 34–55.

    Article  Google Scholar 

  45. M. T. McCallig, R. Kurth and B. Steel, Recursive digital filters with low coefficient sensitivity, Proc. 1979 Int’l. Conf. on Acoust., Sp. and Sig. Proc., Washington, D.C., April, 1979.

    Google Scholar 

  46. S. F. McCormick, D. Pryor and G. D. Taylor, Evaluation of functions in microcomputers: ln(x), Int. J. Comput. and Math. with Appl. 8 (1982), 389–392.

    Article  Google Scholar 

  47. A. Ralston, Rational Chebyshev approximation by Remes algorithm, Numer. Math. 7 (1965), 322–330.

    Article  Google Scholar 

  48. J. R. Rice, The Approximation of Functions, Vol. II — Advanced Topics, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  49. G. D. Taylor, Approximation by functions having restricted ranges III, J. Math. Anal. Appl. 27 (1969), 241–248.

    Article  Google Scholar 

  50. H. Werner, Tschebysheff-Approximation in Bereich der rationalen Funktionen bei Vorliegen einer guten Ausgangsnahersung, Arch. Rat. Mech. Anal. 10 (1962), 205–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Taylor, G.D. (1985). The Differential Correction Algorithm. In: Meinardus, G., Nürnberger, G. (eds) Delay Equations, Approximation and Application. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 74. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7376-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7376-5_17

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7378-9

  • Online ISBN: 978-3-0348-7376-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics