Skip to main content

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

Contraction of airways smooth muscle is universally accepted as being the principal component of the acute phase of airflow limitation that characterizes an asthmatic attack. It is also acknowledged that the airway structure of asthmatic subjects is abnormal. The abnormality is, in all likelihood, a consequence of the profound inflammatory processes that thicken the airway wall and promote transudation of mucus and oedema fluid into the airway lumen. Coincident with, or consequent upon, these changes there occurs an increase in airways smooth muscle mass which is hyperresponsive to a wide range of provoking stimuli. Despite detailed knowledge of these fundamental changes in airways smooth muscle and its contractile state, some of which have been recognized for a considerable period of time, it is only relatively recently that the complex molecular mechanisms underlying contraction of airways smooth muscle have begun to be unravelled. Detailed discussion of several different aspects of this subject can be found elsewhere in this series. The specific objective of this chapter is to provide a brief overview of the pharmacology of the voltage-dependent and receptor-operated calcium channels present in airways smooth muscle cells. In this context, our attention will be focussed only on those calcium channels that exist within the plasmalemmal membrane of airways smooth muscle cells and not on those calcium release channels found in the sarcoplasmic reticulum within the cells. These latter channels are dealt with elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodger IW. Airway smooth muscle: Signal transduction and contractile mechanisms. In: Holgate ST, Austen KF, Lichtenstein LM, Kay AB, editors. Asthma: physiology, immunopharmacology and treatment. London: Academic Press, 1993: 243 57.

    Google Scholar 

  2. Rodger IW, Small RC. The pharmacology of airway smooth muscle. In: Page CP, Barnes PJ, editors. Pharmacology of asthma. Handbook of experimental pharmacology; Vol. 98, Berlin: Springer Verlag, 1991: 107–41.

    Google Scholar 

  3. Kotlikoff MI. Potassium currents in canine airway smooth muscle cells. Am J Physiol 1990; 259: L384 - L395.

    PubMed  CAS  Google Scholar 

  4. Kume H, Kotlikoff MI. Muscarinic inhibition of single Kca channels in smooth muscle cells by a pertussis-sensitive G-protein. Am J Physiol 1991; 261: C1204 - C1209.

    PubMed  CAS  Google Scholar 

  5. Saunders H-MH, Farley JM. Spontaneous transient outward currents and Ca++ -activated K+ channels in swine tracheal smooth muscle cells. J Pharmacol Exp Ther 1991; 257: 1114–1120.

    PubMed  CAS  Google Scholar 

  6. Small RC, Foster RW. The electrophysiology of calcium-channels in airways smooth muscle. In: Giembycz MA, Raeburn D, editors. Airways smooth muscle: Development, and regulation of contractility. Basel: Birkhauser Verlag, 1994: 137–61.

    Google Scholar 

  7. Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 1979; 59: 606–718.

    PubMed  CAS  Google Scholar 

  8. Spedding M, Paoletti R. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 1992; 44: 363 376.

    Google Scholar 

  9. Lundberg JM, Hökfelt T, Nilsson G, Terenius L, Rehfeld J, Edle R, Said SI. Peptide neurons in the vagus, splanchnic, and sciatic nerves. Acta Physiol Scand 1978; 104: 499–501.

    Article  PubMed  CAS  Google Scholar 

  10. Richardson J, Beland J. Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol 1976; 41: 764–71.

    PubMed  CAS  Google Scholar 

  11. Armstrong D, Eckert R. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci USA 1987; 84: 2518–2522.

    Article  PubMed  CAS  Google Scholar 

  12. Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N. The roles of the subunits in the function of the calcium channel. Science 1991; 253: 1553 1556.

    Google Scholar 

  13. Varadi G, Lory P. Schultz D, Varadi M, Schwartz A. Acceleration of activation and inactivation by the ß subunit of the skeletal muscle calcium channel. Nature 1991; 352: 159–162.

    Article  PubMed  CAS  Google Scholar 

  14. Hisada T, Kurachi Y, Sugimoto T. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea. Pflugers Arch 1990; 416: 151–161.

    Article  PubMed  CAS  Google Scholar 

  15. Kotlikoff MI. Ion channels in airway smooth muscle. In: Coburn RF. editor. Airway smooth muscle in health and disease. New York: Plenum Press, 1989: 169–182.

    Chapter  Google Scholar 

  16. Marthan R, Martin C, Amédée T, Mironneau J. Calcium channel currents in isolated smooth muscle cells from human bronchus. J Appl Physiol 1989; 66: 1706–1714.

    PubMed  CAS  Google Scholar 

  17. Kotlikoff MI. Calcium currents in isolated canine airway smooth muscle cells. Am J Physiol 1988; 254: C793 - C801.

    PubMed  CAS  Google Scholar 

  18. Worley JF III, Kotlikoff MI. Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. Am J Physiol 1990; 259: L468 - L480.

    PubMed  CAS  Google Scholar 

  19. Rodger IW. Calcium channels. Am Rev Resp Dis 1987; 136 (4Pt2): S15 - S17.

    PubMed  CAS  Google Scholar 

  20. Kirkpatrick CT. Excitation and contraction in bovine tracheal smooth muscle. J Physiol (London) 1975; 244: 263–281.

    CAS  Google Scholar 

  21. Suzuki H, Morita K, Kuriyama H. Innervation and properties of the smooth muscle of the dog trachea. Jpn J Physiol 1976; 26: 303–320.

    Article  PubMed  CAS  Google Scholar 

  22. Coburn RF, Yamaguchi T. Membrane potential-dependent and -independent tension in the canine tracheal muscle. J Pharmacol Exp Ther 1977; 201: 276–284.

    PubMed  CAS  Google Scholar 

  23. Farley JM, Miles PR. Role of depolarization in acetylcholine-induced contractions of dog trachealis muscle. J Pharmacol Exp Ther 1977; 201: 199–205.

    PubMed  CAS  Google Scholar 

  24. Coburn RF. Electromechanical coupling in canine trachealis muscle: acetylcholine contractions. Am J Physiol 1979; 236: C177 - C184.

    PubMed  CAS  Google Scholar 

  25. Foster RW, Small RC, Weston AH. The spasmogenic action of potassium chloride in guinea-pig trachealis. Br J Pharmacol 1983; 80: 553–559.

    PubMed  CAS  Google Scholar 

  26. Foster RW, Small RC, Weston AH. Evidence that the spasmogenic action of tetraethyl-ammonium in guinea-pig trachealis is both direct and dependent upon the cellular influx of calcium ion. Br J Pharmacol 1983; 79: 255–263.

    PubMed  CAS  Google Scholar 

  27. Raeburn D, Rodger IW. Lack of effect of leukotriene Dq on Ca-uptake in airway smooth muscle. Br J Pharmacol 1984; 83: 499–504.

    PubMed  CAS  Google Scholar 

  28. Weiss GB, Pang IH, Goodman FR. Relationship between 45Ca movements, different calcium components and responses to acetylcholine and potassium in tracheal smooth muscle. J Pharmacol Exp Ther 1985; 233: 389–394.

    PubMed  CAS  Google Scholar 

  29. Takuwa Y, Takuwa N, Rasmussen H. Measurement of cytoplasmic free Ca’ concentration in bovine tracheal smooth muscle using aequorin. Am J Physiol 1987; 253: C817 - C827.

    PubMed  CAS  Google Scholar 

  30. Allen SL, Foster RW, Small RC, Towart R. The effects of the dihydropyridine BAY-K 8644 in guinea pig isolated trachealis. Br J Pharmacol 1985; 86: 171–180.

    PubMed  CAS  Google Scholar 

  31. Advenier C, Naline E, Renier A. Effects of BAY-K 8644 on contraction of the human isolated bronchus and guinea-pig isolated trachea. Br J Pharmacol 1986; 88: 33–39.

    PubMed  CAS  Google Scholar 

  32. Marthan R, Armour CL, Johnson PRA, Black JL. The calcium channel agonist BAY-K 8644 enhances the responsiveness of human airway muscle to KCI and histamine but not to carbachol. Amer Rev Resp Dis 1987; 135: 185–189.

    PubMed  CAS  Google Scholar 

  33. Richards IS, Kulkarni A, Brooks SM. Human fetal tracheal smooth muscle produces spontaneous electromechanical oscillations that are Ca’-dependent and cholinergically potentiated. Dey Pharmacol Ther 1991; 16: 22–28.

    CAS  Google Scholar 

  34. Kannan MS, Jager LP, Daniel EE, Garfield RE. Effects of 4-aminopyridine and tetraethylammonium chloride on the electrical activity and cable properties on canine tracheal smooth muscle. J Pharmac Exp Ther 1983; 227: 706–715.

    CAS  Google Scholar 

  35. Foster RW, Okpalugo BI, Small RC. Antagonism of Ca’ and other actions of verapamil in guinea-pig isolated trachealis. Br J Pharmacol 1984; 81: 499–507.

    PubMed  CAS  Google Scholar 

  36. Ahmad F, Foster RW, Small RC. Some effects of nifedipine in guinea-pig isolated trachealis. Br J Pharmacol 1985; 84: 861–869.

    Google Scholar 

  37. Baba K, Kawanishi M, Satake T, Tornita T. Effects of verapamil on the contractions of guinea-pig tracheal smooth muscle induced by Ca, Sr and Ba. Br J Pharmacol 1985; 84: 203–211.

    PubMed  CAS  Google Scholar 

  38. Raeburn D, Roberts JA, Rodger IW, Thomson NC. Agonist-induced contractile responses of human bronchial muscle in vitro. Effects of Ca“ removal, La’ and PY108068. Eur J Pharmacol 1986; 121: 251–255.

    Article  PubMed  CAS  Google Scholar 

  39. Giembycz MA, Rodger IW. Electrophysiological and other aspects of excitation-contraction coupling and uncoupling in mammalian airway smooth muscle. Life Sci 1987; 41: 111–132.

    Article  PubMed  CAS  Google Scholar 

  40. Small RC, Foster RW. Airway smooth muscle: An overview of morphology, electrophysiology and aspects of the pharmacology of contraction and relaxation. In: Kay AB, editor. Asthma: clinical pharmacology and therapeutic progress. Oxford: Blackwell Scientific Publications, 1986: 101–113.

    Google Scholar 

  41. Kajita J, Yamaguchi H. Calcium mobilization by muscarinic cholinergic stimulation in bovine single airway smooth muscle. Am J Physiol 1993; 264: L496 - L503.

    PubMed  CAS  Google Scholar 

  42. Henry Pi. Endothelin-1 (ET-1)-induced contraction in rat isolated trachea: involvement of ETA and ETB receptors and multiple signal transduction systems. Br J Pharmacol 1993; 110: 435–441.

    Google Scholar 

  43. Murray RK, Kotlikoff MI. Receptor-activated calcium influx in human airway smooth muscle cells. J Physiol (London) 1991; 435: 123–144.

    CAS  Google Scholar 

  44. Bourreau J-P, Abela AP, Kwan CY, Daniel EE. Acetylcholine Ca’ stores refilling directly involves a dihydropyridine-sensitive channel in dog trachea. Am J Physiol 1991; 261: C497–0505.

    PubMed  CAS  Google Scholar 

  45. Rodger IW, Pyne NJ. Airway smooth muscle. In: Barnes PJ, Rodger IW, Thomson NC, editors. Asthma: basic mechanisms and clinical management. London: Academic Press, 1992: 59–84.

    Google Scholar 

  46. Clapham DE. A mysterious new influx factor? Nature 1993; 364: 763–764.

    Article  PubMed  CAS  Google Scholar 

  47. Randriamampita C, Tsien RY. Emptying of intracellular Ca“ stores releases a novel small messenger that stimulates Ca” influx. Nature 1993; 364: 809–814.

    Article  PubMed  CAS  Google Scholar 

  48. Parekh AB, Terlau H, Stühmer W. Depletion of InsP3 stores activates a Ca’ and K+ current by means of a phosphatase and a diffusable messenger. Nature 1993; 364: 814–818.

    Article  PubMed  CAS  Google Scholar 

  49. Hartzell HC, Méry P-F, Fischmeister R, Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature 1991; 351: 573–576.

    Article  PubMed  CAS  Google Scholar 

  50. Kameyama M, Hofmann F, Trautwein W. On the mechanism of ß-adrenergic regulation of the CaZ+ in the guinea-pig heart. Pfugers Arch 1985; 405: 285–293.

    Article  CAS  Google Scholar 

  51. Imoto Y, Yatani A, Reeves JP, Codina J, Birnbaumer L, Brown AM. a-Subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am J Physiol 1988; 255: H722 - H728.

    PubMed  CAS  Google Scholar 

  52. Felbel J, Trockur B, Ecker T, Landgraf W, Hofmann F. Regulation of cytosolic calcium by CAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. J Biol Chem 1988; 263: 16764–16771.

    PubMed  CAS  Google Scholar 

  53. Takuwa Y, Takuwa N, Rasmussen H. The effects of isoproterenol on intracellular calcium concentration. J Biol Chem 1988; 263: 762–768.

    PubMed  CAS  Google Scholar 

  54. Welling A, Felbel J, Peper K, Hofmann F. Hormonal regulation of calcium current in freshly isolated airway smooth muscle cells. Am J Physiol 1992; 262: L351 -L359.

    Google Scholar 

  55. Rodger IW. Biochemistry of activation-contraction coupling. In: Busse W, Holgate ST, editors. Asthma and rhinitis. Cambridge USA: Blackwell Scientific, 1995.

    Google Scholar 

  56. Ahmed F, Foster RW, Small RC, Weston AH. Some features of the spasmogenic actions of acetylcholine and histamine in guinea-pig isolated trachealis. Br J Pharmacol 1984; 83: 227–233.

    PubMed  CAS  Google Scholar 

  57. Jones TR, Davis C, Daniel EE. Pharmacological study of the contractile activity of leukotriene C, and D4 on isolated human airway smooth muscle. Can J Physiol Pharmacol 1982; 60: 638–643.

    Article  PubMed  CAS  Google Scholar 

  58. Cerrina J, Advenier C, Renier A, Floch A, Duroux P. Effects of diltiazem and other CaZ+-antagonists on guinea-pig tracheal muscle. Eur J Pharmacol 1983; 94: 241–249.

    Article  PubMed  CAS  Google Scholar 

  59. Advenier C, Cerrina J, Duroux P, Floch A, Renier A. Effects of five different organic calcium antagonists on guinea-pig isolated trachea. Br.1 Pharmacol 1984; 82: 727–733.

    CAS  Google Scholar 

  60. Baba K, Satake T, Takagi K, Tornita T. Effects of verapamil on the response of the guinea pig trachea muscle to carbachol. Br J Pharmacol 1986; 88: 441–449.

    PubMed  CAS  Google Scholar 

  61. Roberts JA, Giembycz MA, Raeburn D, Rodger IW, Thomson NC. In vitro and in vivo effect of verapamil on human airway responsiveness to leukotriene D4. Thorax 1986; 41: 12–16.

    Article  PubMed  CAS  Google Scholar 

  62. Murray RK, Fleischmann BK, Kotlikoff MI. Receptor-activated Ca influx in human airway smooth muscle: use of Ca imaging and perforated patch-clamp techniques. Am J Physiol 1993; 264: C485 - C490.

    PubMed  CAS  Google Scholar 

  63. Yang CM, Yo Y-L, Wang Y-Y. Intracellular calcium in canine cultured tracheal smooth-muscle cells is regulated by M3 muscarinic receptors. Br J Pharmacol 1993; 110: 983–988.

    PubMed  CAS  Google Scholar 

  64. Hallam TJ, Rink TJ. Agonists stimulate divalent cation channels in the plasma membrane of human platelets. FEBS Lett 1985; 186: 175–179.

    Article  PubMed  CAS  Google Scholar 

  65. Hallam TJ, Jacob R, Merritt JE. Evidence that agonists stimulate bivalent-cation influx into human endothelial cells. Biochem J 1988; 255: 179–184.

    PubMed  CAS  Google Scholar 

  66. Merritt JE, Jacob R, Hallam TJ. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem 1989; 264: 1522–1527.

    PubMed  CAS  Google Scholar 

  67. Penner R, Matthews G, Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature 1988; 334: 499–504.

    Article  PubMed  CAS  Google Scholar 

  68. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355: 353–356.

    Article  PubMed  CAS  Google Scholar 

  69. Putney JW. A model for receptor-regulated calcium entry. Cell Calcium 1986; 7: 1–12.

    Article  PubMed  CAS  Google Scholar 

  70. Putney JW. Excitement about calcium signalling in inexcitable cells. Science 1993; 262: 676–678.

    Google Scholar 

  71. Barnes PJ. Clinical studies with calcium antagonists in asthma. Br J Clin Pharmacol 1985; 20 (Suppl. 2): 289S - 298S.

    PubMed  Google Scholar 

  72. Löfdahl C-G, Barnes PJ. Calcium channel blockade and asthma–the current position. Eur J Respir Dis 1985; 67: 233–237.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rodger, I.W. (1995). Voltage-Dependent and Receptor-Operated Calcium Channels. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Peptide Receptors, Ion Channels and Signal Transduction. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7362-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7362-8_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7364-2

  • Online ISBN: 978-3-0348-7362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics