Skip to main content

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

  • 57 Accesses

Abstract

The study of airway sensory innervation has been a major topic in respiratory physiology because of the importance of afferent neural input for regulating lung function and activating reflex bronchoconstriction and cough. In this context, capsaicin, the natural pungent ingredient of red peppers, has been extensively used by respiratory physiologists as a chemical probe to activate reflexes arising from the airways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szolcsanyi J, Bartho L. Capsaicin-sensitive non-cholinergic excitatory innervation of the guinea-pig tracheobronchial smooth muscle. Neurosci Letters 1982; 34: 247–250.

    CAS  Google Scholar 

  2. Szolcsanyi J. Tetrodotoxin-resistant noncholinergic neurogenic contraction evoked by capsaicinoids and piperine on the guinea-pig trachea. Neurosci Letters 1983; 42: 83–88.

    CAS  Google Scholar 

  3. Lundberg JM, Saria A. Bronchial smooth muscle contraction induced by stimulation of capsaicin-sensitive sensory neurons. Acta Physiol Scand 1982; 116: 473–476.

    PubMed  CAS  Google Scholar 

  4. Lundberg JM, Saria A. Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants, Nature 1983; 302: 251–253.

    PubMed  CAS  Google Scholar 

  5. Szolcsanyi J. Capsaicin-sensitive chemoceptive neural system with dual sensory-efferent function. In: LA Chahl, J Szolcsanyi and F Lembeck, editors: Antidromic vasodilatation and neurogenic inflammation. Budapest, Hungary: Akademiai Kiado, 1984: 27–55.

    Google Scholar 

  6. Maggi CA, Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 1988; 19: 1–43.

    PubMed  CAS  Google Scholar 

  7. Maggi CA. Capsaicin and primary afferent neurons: From basic science to human therapy ? J. Autonom Nervous System 1991; 33: 1–14.

    Google Scholar 

  8. Szallasi A, Blumberg PM. Resininferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci 1990; 47: 1399–1408.

    PubMed  CAS  Google Scholar 

  9. Bevan S, Szolcsanyi J. (1992) Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci 1992; 11: 330–333.

    Google Scholar 

  10. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, CGRP and other neuropeptides. Neuroscience 1988; 24: 739–68.

    PubMed  CAS  Google Scholar 

  11. Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-tranasmitters released from peripheral endings of sensory nerves. Progress in Neurobiol. In press.

    Google Scholar 

  12. Lundberg JM, Saria A. Polypeptide-containing neurons in airway smooth muscle. Ann Rev Physiol 1987; 49: 557–572.

    CAS  Google Scholar 

  13. Maggi CA. Tachykinin receptors in the airways and lung: What should we block? Pharmaocl Res 1990; 22: 527–540.

    Google Scholar 

  14. Maggi CA. (1993b) Tachykinin receptors and airway pathophysiology. Eur Respir J 1993; 6: 735–742.

    PubMed  CAS  Google Scholar 

  15. Cadieaux A, Springall DR, Mulderry PK, Rodrigo J, Ghatei MA, Terenghi O, Blook SR, Polak JM. Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract, effect of capsaicin treatment and surgical denervations. Neurosci. 1986; 19: 605–627.

    Google Scholar 

  16. Otsuka M, Yoshioka K. Neurotransmitter function of mammalian tachykinins. Physiol Reviews 1993; 73: 229–308.

    CAS  Google Scholar 

  17. Maggi CA, Patacchini R, Rovero P, Giachetti A. Tachykinin receptors and tachykinin receptor antagonists. J Autonom Pharmacol 1993; 13: 23–93.

    CAS  Google Scholar 

  18. Saria A, Martling CR, Yan Z. Theodorsson-Norheim E, Gamse R, Lundberg JM. Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, DMPP and vagal nerve stimulation. Amer Rev Resp Dis 1988; 137: 1330–1335.

    PubMed  CAS  Google Scholar 

  19. Maggi CA, Patacchini R, Perretti F, Meini S, Manzini S, Santicioli P, Del Bianco E, Meli A. The effect of thiorphan and epithelium removal on contractions and tachykinin release produced by activation of the capsaicin-sensitive afferents in the guinea-pig isolated bronchus. Naunyn Schmiedeberg’s Arch Pharmacol 1990; 341: 74–79.

    CAS  Google Scholar 

  20. Martling CR, Saria A, Fischer JA, Hokfelt T, Lundberg JM. CGRP and the lung: Neuronal coexistence with SP release by capsaicin and vasodilatory effects. Regul Peptides 1988; 20: 125–139.

    CAS  Google Scholar 

  21. Nadel JA. Neutral endopeptidase modulates neurogenic inflammation. Eur Resp J 1991; 4: 745–754.

    CAS  Google Scholar 

  22. Nakanishi S. Mammalian tachykinin receptors. Annu Rev Neurosci 1991; 14: 123–136.

    PubMed  CAS  Google Scholar 

  23. Gerard NP, Bao L, Xiao-Ping H, Gerard C. Molecular aspects of the tachykinin receptors. Regul Peptides 1993; 43: 21–35.

    CAS  Google Scholar 

  24. Martling CR, Theodorsson-Norheim E, Lundberg JM. Occurrence and effects of multiple tachykinins, SP, NKA and neuropeptide K in human airways. Life Sciences 1987; 40: 1633–1643.

    CAS  Google Scholar 

  25. Snider RM, Constantine JW, Lowe JA, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ. A potent nonpeptide antagonist of the SP (NK-1) receptor. Science 1991; 251: 435–437.

    PubMed  CAS  Google Scholar 

  26. Garret C, Carruette A, Fardin V, Moussaoui S, Peyronel JF, Blanchard JC, Laduron PM. Pharmacological properties of a potent and selective nonpeptide SP antagonist, Proc Natl Acad Sci USA 1991; 88: 10208–10211.

    PubMed  CAS  Google Scholar 

  27. Emonds-Alt X, Vilain P, Goulaouic P, Proietto V, Van Broeck D, Advenier C, Naline E, Neliat G, Le Fur G, Breliere JC. A potent and selective nonpeptide antagonist of the neurokinin A (NK-2) receptor. Life Sci-Pharmacol Letters 1992; 50: PL101–106.

    Google Scholar 

  28. Maggi CA. Evidence for receptor subtypes/species variants of tachykinin receptors. In: Buck SH, editor: Tachykinin receptors. Humana Press, 1994.

    Google Scholar 

  29. Barr AJ, Watson SP. Non-peptide antagonists CP 96,345 and RP 67,580, distinguish species variants in tachykinin NK-1 receptors. Br J Pharmacol 1993; 108: 223–227.

    PubMed  CAS  Google Scholar 

  30. Patacchini R, Santicioli P, Astolfi M, Rovero P, Viti G, Maggi CA. Activity of peptide and non-peptide antagonists at peripheral NK-1 tachykinin receptors. Eur J Pharmacol 1992; 215: 93–98.

    PubMed  CAS  Google Scholar 

  31. Gitter BD, Waters DC, Bruns RF, Mason NR, Nixon JA, Howbert JJ. Species differences in affinities of nonpeptide antagonists for SP receptors. Eur J Pharmacol 1991; 197: 237–238.

    PubMed  CAS  Google Scholar 

  32. Fong TM, Yu H, Strader CD. Molecular basis for the species selectivity of the NK, receptor antagonists CP 96,345 and RP 67,580. J Biol Chemistry 1992; 267: 2566825671.

    Google Scholar 

  33. Petitet F, Saffroy M, Torrens Y, Lavielle S, Chassaing G, Loeuillet D, Glowinski J, Beaujouan JC. Possible existence of a new tachykinin receptor subtype in the guinea-pig ileum. Peptides 1992; 13: 383–388.

    PubMed  CAS  Google Scholar 

  34. Maggi CA, Patacchini R, Meini S, Giuliani S. Evidence for the presence of a septide-sensitive tachykinin receptor in the circular muscle of the guinea-pig ileum. Eur J Pharmacology 1993; 235: 309–311.

    CAS  Google Scholar 

  35. Meini S, Patacchini R, Maggi CA. Tachykinin NK-1 receptor subtypes in the rat urinary bladder. Br J Pharmacol 1994; 111: 739–746.

    PubMed  CAS  Google Scholar 

  36. Maggi CA, Patacchini R, Giuliani S, Rovero P, Dion S, Regoli D, Giachetti A, Meli A. Competitive antagonists discriminate between NK-2 tachykinin receptor subtypes. Br J Pharmacol 1990; 100: 588–592.

    CAS  Google Scholar 

  37. Nimmo A, Carstairs JR, Maggi CA, Morrison JFB. Evidence for the co-existence of multiple NK-2 tachykinin receptor subtypes in rat bladder. Neuropeptides 1992; 22: 48.

    Google Scholar 

  38. Brunelleschi S, Ceni E, Fantozzi R, Maggi CA. Evidence for tachykinin NK-2B-like receptors in guinea-pig alveolar macrophages. Life Sci-Pharmacology Letters 1992; 51: PL177–181.

    Google Scholar 

  39. Guard S, Watson SP. Tachykinin receptor types: Classification and membrane signalling mechanisms. Neurochem Int 1991; 18: 149–165.

    PubMed  CAS  Google Scholar 

  40. Nakajima Y, Tsuchida K, Negishi M, Ito S, Nakanishi S. Direct linkage of three tachykinin receptors to stimulation of both phosphatidylinositol hydrolysis and cyclic AMP cascades in transfected chinese hamster ovary cells. J Biol Chemistry 1992; 267: 2437–2442.

    CAS  Google Scholar 

  41. Takeda Y, Blount P, Sachais BS, Hershey AD, Raddatz R, Krause JE. Ligand binding kinetics of substance P and neurokinin A receptors stably expressed in CHO cells and evidence for differential stimulation of inositol 1,4,5-triphosphate and cAMP second messenger responses. J Neurochem 1992; 59: 740–745.

    PubMed  CAS  Google Scholar 

  42. De Bernardi MA, Seki T, Brooker G. Inhibition of cAMP accumulation by intracellular calcium mobilization in C6–2B cells stably transfected with substance K receptor eDNA. Proc Natl Acad Sci USA 1991; 88: 9257–9261.

    Google Scholar 

  43. Eistetter HR, Church DJ, Mills A, Godfrey PP, Capponi AM, Brewster R, Schulz MF, Kawashima E, Arkinstall SJ. Recombinant bovine NK-2 receptor stably expressed in chinese hamster ovary cells couples to multiple signal transduction pathways. Cell Regul 1991; 2: 767–779.

    PubMed  CAS  Google Scholar 

  44. Eistetter HR, Mills A, Arkinstall SJ. Signal transduction mechanisms of recombinant NK-2 receptor stably expressed in baby hamster kidney cells. J Cell Biochemistry 1993; 52: 84–91.

    CAS  Google Scholar 

  45. Stansfeld PR, Nakajima Y, Yamaguchi K. Substance P raises neuronal membrane excitability by reducing inward rectification. Nature 1985; 315: 498–501.

    Google Scholar 

  46. Nakajima Y, Nakajima S, Inoue M. Pertussis toxin-insensitive G protein mediates substance P-induced inhibition of potassium channels in brain neurons. Proc Natl Acad Sci USA 1988; 85: 3643–3647.

    PubMed  CAS  Google Scholar 

  47. Sun XP, Supplisson S, Torres R, Sachs G, Mayer E. Characterization of large conductance chloride channels in colonic smooth muscle. J Physiol (London) 1992; 448: 355–382.

    CAS  Google Scholar 

  48. Sun XP, Supplisson S, Mayer E. Chloride channels in myoctyes from rabbit colon are regulated by a pertussis toxin-sensitive G protein. Amer J Physiol 1993; 264: G774 - G785.

    PubMed  CAS  Google Scholar 

  49. Mau SE, Saermark T. Substance P stimulation of polyphosphoinositide hydrolysis in rat anterior pituitary membranes involves a GTP-dependent mechanism. J Endocrinology 1990; 130: 63–70.

    Google Scholar 

  50. Watra MM, Schwinn DA, Schreurs J, Blank JL, Kim CM, Benovic JL, Krause JE, Caron MG, Lefkowtiz RJ. The substance P receptor which couples to Gq1,„ is a substrate of ß-adrenergic receptor kinase 1 and 2. J Biol Chemistry 1993; 268: 91619164.

    Google Scholar 

  51. Blount P, Krause JE. Functional nonequivalence of structurally homologous domains of NK-1 and NK-2 type tachykinin receptors. J Biol Chemistry 1993; 268: 16388–16395.

    CAS  Google Scholar 

  52. Maggi CA, Patacchini R, Quartara L, Rovero P, Santicioli P. Tachykinin receptors in the guinea-pig isolated bronchi. Eur J Pharmacol 1991; 197: 167–174.

    PubMed  CAS  Google Scholar 

  53. Belvisi M, Patacchini R, Barnes PJ, Maggi CA. Facilitatory effects of selective agonists for tachykinin receptors on cholinergic neurotransmission: evidence for species differences. Br J Pharmacol 1994; 111: 103–110.

    PubMed  CAS  Google Scholar 

  54. Barnes PJ. Neuropeptides and airways pathophysiology. Neuropeptides 1992; 22: 7.

    Google Scholar 

  55. Manzini S. Bronchodilation by tachykinins and capsaicin in the mouse main bronchus. Br J Pharmacol 1992; 105: 968–972.

    PubMed  CAS  Google Scholar 

  56. Devillier P, Acker M, Advenier C, Marsac J, Regoli D, Frossard N. Activation of an epithelial neurokinin 1 receptor induces relaxation of rat trachea through release of prostaglandin E,. J Pharmacol Exp Ther 1992; 263: 767–772.

    PubMed  CAS  Google Scholar 

  57. Maggi CA, Patacchini R, Baroldi P, Theodorsson E, Meli A. Immunoblockade by a specific tachykinin antiserum of the noncholinergic contractile responses in the guinea-pig isolated bronchus. J Autonom Pharmacol 1990; 10: 173–179.

    CAS  Google Scholar 

  58. Maggi CA, Patacchini R, Rovero P, Santicioli P. Tachykinin receptors and noncholinergic bronchoconstriction in the guinea-pig isolated bronchi. Am Rev Resp Dis 1991; 144: 363–367.

    PubMed  CAS  Google Scholar 

  59. Martin CAE, Naline E, Emonds-Alt X, Advenier C. Influence of CP 96,345 and SR 48,968 on eletrical field stimulation of the isolated guinea-pig main bronchus. Eur J Pharmacol 1992; 224: 137–143.

    PubMed  CAS  Google Scholar 

  60. Maggi CA, Guiliani S, Ballati L, Lecci A, Manzini S, Patacchini R, Renzetti AR, Rovero P, Quartara L, Giachetti A. In vivo evidence for tachykininergic transmission using a new NK-2 receptor selective antagonist, MEN 10376. J Pharmacol Exp Ther 1991; 257: 1172–1178.

    PubMed  CAS  Google Scholar 

  61. Ballati L, Evangelista S, Maggi CA, Manzini S. Effect of selective tachykinin receptor antagonists on capsaicin-and TK-induced bronchospasm in anaesthetized guinea-pigs. Eur J Pharmacol 1992; 214: 215–221.

    PubMed  CAS  Google Scholar 

  62. Lou YP, Lee LY, Satoh H, Lundberg JM. Postjunctional inhibitory effect of the NK-2 receptor antagonist SR 48968 on sensory NANC bronchoconstriction in the guinea-pig. Br J Pharmacol 1993; 109: 765–773.

    PubMed  CAS  Google Scholar 

  63. Lundberg JM, Brodin E, Hua XY, Saria A. Vascular permeability changes and smooth muscle contraction in relation to capsaicin-sensitive SP afferents in the guinea-pig. Acta Physiol Scand 1984; 120: 217–227.

    PubMed  CAS  Google Scholar 

  64. Manzini S, Conti S, Maggi CA, Abelli L, Somma V, Del Bianco E, Geppetti P. Regional differences in the motor and inflammatory responses to capsaicin in guinea-pig airways. Amer Rev Resp Dis 1989; 140: 936–941.

    PubMed  CAS  Google Scholar 

  65. Abelli L, Maggi CA, Rovero P, Del Bianco E, Regoli D, Drapeau G, Giachetti A. Effect of synthetic tachykinin analogues on airway microvascular leakage in rats and guinea-pigs: evidence for the involvement on NK-1 receptors. J Autonom Pharmacol 1991; 11: 267–275.

    CAS  Google Scholar 

  66. Eglezos A, Giuliani S, Viti G, Maggi CA. Direct evidence that capsaicin-induced plasma protein extravasation is mediated through tachykinin NK-1 receptors. Eur J Pharmacol 1991; 209: 277–279.

    PubMed  CAS  Google Scholar 

  67. Delay-Goyet P, Lundberg JM. Cigarette smoke-induced airway oedema is blocked by the NK-1 antagonist, CP 96,345. Eur J Pharmacol 1991; 203: 157–158.

    PubMed  CAS  Google Scholar 

  68. Lei YH, Barnes PJ, Rogers DF. Inhibition of neurogenic plasma exudation in guinea-pig airways by CP-96,345 a new non-peptide NK-1 receptor antagonist. Br J Pharmacol 1992; 105: 261–262.

    PubMed  CAS  Google Scholar 

  69. Tousignant C, Chan CC, Guevremont D, Brideau C, Hale JJ, MacCoss M, Rodger IW. NK-2 receptor mediate plasma extravasation in guinea-pig lower airways. Br J Pharmacol 1993; 108: 383–386.

    PubMed  CAS  Google Scholar 

  70. Majno G, Shea SM, Leventhal M. Endothelial contraction induced by histamine-type mediators. An electron microscopy study. J Cell Biology 1969; 42: 647–670.

    CAS  Google Scholar 

  71. Baluk P, Nadel JA, McDonald D. SP-immunoreactive sensory axons in the rat respiratory tract: A quantitative study of their distribution and role in neurogenic inflammation. J Comp Neurol 1992; 319: 586–598.

    PubMed  CAS  Google Scholar 

  72. Bertrand C, Geppetti P, Baker J, Yamawaki I, Nadel JA. Role of neurogenic inflammation in antigen induced vascular extravasation in guinea-pig trachea. J Immunology 1993; 150: 1479–1485.

    CAS  Google Scholar 

  73. Webber SE. Receptors mediatind the effects of substance P and neurokinin A on mucus secretion and smooth muscle tone of the ferret trachea: potentiation by an enkephalinase inhibitor. Br J Pharmacol 1989; 98: 1197–1206.

    PubMed  CAS  Google Scholar 

  74. Rogers DF, Aursudkij B, Barnes PJ. Effect of tachykinins on mucus secretion in human bronchi in vitro. Eur J Pharmacol 1989; 174: 283–286.

    PubMed  CAS  Google Scholar 

  75. Meini S, Mak JCW, Rohde JAL, Rogers DF. Tachykinin control of ferret airways: Mucus secretion, bronchoconstriction and receptor mapping. Neuropeptides 1993; 24: 81–89.

    PubMed  CAS  Google Scholar 

  76. Kuo HP, Rohde JA, Tokuyama K, Barnes PJ, Rogers DF. Capsaicin and sensory neuropeptide stimulation of goblet cell secretion in guinea-pig trachea. J Physiol (London) 1990; 431: 629–641.

    CAS  Google Scholar 

  77. Watson N, Maclagan J, Barnes PJ. Endogenous tachykinins facilitate transmission through parasympathetic ganglia in guinea-pig trachea. Br J Pharmacol 1993; 109: 751–759.

    PubMed  CAS  Google Scholar 

  78. Myers AC, Undem BJ. Electrophysiological effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones. J Physiol (London) 1993; 470: 665–679.

    CAS  Google Scholar 

  79. Maggi CA, Patacchini R, Perretti F, Tramontana M, Manzini S, Geppetti P, Santicioli P. Sensory nerves, vascular endothelium and neurogenic relaxation of the guinea-pig isolated pulmonary artery. Naunyn Schmiedeberg’s Arch Pharmacol 1990; 342: 78–84.

    CAS  Google Scholar 

  80. Poyner DR. CGRP: multiple actions, multiple receptors. Pharmacol Ther 1993; 56: 23–51.

    Google Scholar 

  81. Quirion R, Van Rossum D, Dumont Y, St Pierre S, Fournier A. Characterization of CGRP, and CGRP, receptor subtypes. Ann New York Acad Sci 1992; 657: 88–105.

    CAS  Google Scholar 

  82. Chiba T, Yamaguchi A, Yamatani T, Nakamura A, Morishita T, Inui T, Fukase M, Noda T, Fujita T. CGRP receptor antagonist hCGRP(8–37). Am J Physiol E331–E335.

    Google Scholar 

  83. Mimeault M, Fournier A, Dumont Y, St Pierre S, Quirion R. Comparative affinities and antagonistic potencies of various human CGRP fragments on CGRP receptors in brain and periphery. J Pharmacol Exp Ther 1991; 258: 1084–1090.

    PubMed  CAS  Google Scholar 

  84. Maggi CA, Chiba T, Giuliani S. Human aCGRP(8–37) as an antagonist of exogenous and endogenous calcitonin gene-related peptide. Eur J Pharmacol 1991; 191: 85–88.

    Google Scholar 

  85. Giuliani S, Wimalawansa SJ, Maggi CA. Involvement of multiple receptors in the biological effects of CGRP and amylin in rat and guinea-pig preparations. Br J Pharmacol 1992; 107: 510–514.

    PubMed  CAS  Google Scholar 

  86. Dennis TB, Fournier A, Cadieaux A, Pomerlau F, Jolicoeur FB, St Pierre S, Quirion R. Human CGRP(8–37) receptor anatagonist revealing CGRP receptor heterogeneity in brain and periphery. J Pharmacol Exp Ther 1990; 254: 123–128.

    PubMed  CAS  Google Scholar 

  87. Rovero P, Guiliani S, Maggi CA. CGRP antagonist activity of short C-terminal fragments of human aCGRP, CGRP(23–37) and CGRP(19–37). Peptides 1992; 13: 1025–1027.

    PubMed  CAS  Google Scholar 

  88. Bartho L, Koczan G, Maggi CA. Studies on the mechanisms of the contractile action of rat CGRP and capsaicin on the guinea-pig ileum: Effect of hCGRP(8–37) and CGRP tachyphylaxis. 1993; Neuropeptides 25: 325–329.

    Google Scholar 

  89. Evangelista S, Tramontana M, Maggi CA. Pharmacological evidence for the involvement of multiple calcitonin gene-related peptide (CGRP) receptors in the antisecretory and antiulcer effect of CGRP in rat stomach. Life Sci Pharmacol Letters 1992; 50: P13 - P18.

    Google Scholar 

  90. Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C, Perivascular peptides relax cerebral arteries concomitant with a rise in cAMP or release of an endothelium-derived relaxant factor. Neurosci Letters 1985; 58: 213–217.

    CAS  Google Scholar 

  91. Kubota M, Moseley JM, Botera L, Dusting GJ, MacDonald PS, Martin TS. CGRP stimulates cAMP in rat aortic smooth muscle cells. Biochem Biophys Res Comm 1985; 132: 88–94.

    PubMed  CAS  Google Scholar 

  92. Grace GC, Dusting GJ, Kemp BE, Martin TJ. Endothelium and the vasodilator action of rat CGRP. Br J Pharmacol 1987; 91: 729–733.

    PubMed  CAS  Google Scholar 

  93. Brain SD, Williams TJ, Tippins JR, Morris HR, Maclntyre I. CGRP is a potent vasodilator. Nature 1985; 313: 54–56.

    PubMed  CAS  Google Scholar 

  94. Fiscus RR, Zhou HL, Wang X, Han C, Ali S, Joyce CD, Murad F. CGRP-induced cAMP, cGMP and vasorelaxant response in rat thoracic aorta are antagonized by blockers of endothelium-derived relaxing factor (EDRF). Neuropeptides 1991; 20: 133–139.

    PubMed  CAS  Google Scholar 

  95. Gray DW, Marshall I. Nitric oxide synthesis inhibitors attenuate CGRP endothelium-dependent vasorelaxation in rat aorta. Eur J Pharmacol 1992; 212: 37–42.

    PubMed  CAS  Google Scholar 

  96. Abdelrahman A, Wang YX, Chang SD, Pang CCY. Mechanism of the vasodilator action of CGRP in conscious rats. Br J Pharmacol 1992; 106: 45–48.

    PubMed  CAS  Google Scholar 

  97. Andersson SE. Glibenclamide and L-nitro-arginine methyl ester modulate the ocular and hypotensive effects of CGRP. Eur J Pharmacol 1992; 224: 89–91.

    PubMed  CAS  Google Scholar 

  98. Gray DW, Marshall I. Human xCGRP stimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracic aorta by releasing nitric oxide. Br J Pharmacol 1992; 107: 691–696.

    PubMed  CAS  Google Scholar 

  99. Marshall I. Mechanism of vascular relaxation by the CGRP. New York Acad Sci 1992; 657: 204–215.

    CAS  Google Scholar 

  100. Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB. Arterial dilations in response to CGRP involve activation of K channels. Nature 1990; 344: 770–772.

    PubMed  CAS  Google Scholar 

  101. Hood JS, McMahon TJ, Kadowitz PJ. Influence of lemakalim on the pulmonary vascular bed of the cat. Eur J Pharmacol 1991; 202: 101–107.

    PubMed  CAS  Google Scholar 

  102. Palmer JBD, Cuss FMC, Mulderry PK, Ghatei MA, Springall DR, Cadieux A, Bloom SR, Polak JM, Barnes PJ. CGRP is localised to human airway nerves and potently constricts human airway smooth muscle. Br J Pharmacol 1987; 91: 95–101.

    PubMed  CAS  Google Scholar 

  103. Hamel R, Ford-Hutchison AW. Contractile activity of CGRP on pulmonary tissues. J Pharm Pharmacol 1988; 40: 210–211.

    PubMed  CAS  Google Scholar 

  104. Martling CR, Saria A, Fischer JA, Hokfelt T, Lundberg JM. CGRP and the lung: Neuronal coexistence with SP release by capsaicin and vasodilatory effects. Regul Peptides 1988; 20: 125–139.

    CAS  Google Scholar 

  105. Warner EA, Krell RD, Buckner CK. Pharmacologic studies on the differential influence of inhibitors of neutral endopeptidase on nonadrenergic noncholinergic contractile responses of the guinea-pig isolated hilar bronchus to transmural electrical stimulation and exogenously applied tachykinins. J Pharmacol Exp Ther 1990; 254: 824–830.

    PubMed  CAS  Google Scholar 

  106. Gatto C, Lussky RC, Erickson LW, Berg KJ, Wobken JD, Johnson DE. Calcitonin and CGRP block bombesin and SP-induced increases in airway tone. J Appl Physiol 1989; 66: 573–577.

    PubMed  CAS  Google Scholar 

  107. Cadieaux A, Lanoue C, Sirois P, Barabe’ J. Carbamylcholine and 5-hydroxytryptamineinduced contraction in rat isolated airways: inhibition by CGRP. Br J Pharmacol 1990; 101: 193–199.

    Google Scholar 

  108. Lanoue C, Fournier A, St Pierre S, Cadieaux A. Characterization of CGRP receptor sites in rat airways. New York Acad Sci 1992; 657: 441–442.

    CAS  Google Scholar 

  109. Tschirhart E, Bertrand C, Theodorsson E, Landry Y. Evidence for the involvement of CGRP in the epithelium-dependent contraction of guinea-pig trachea in response to capsaicin. Naunyn Schmiedeberg’s Arch Pharmacol 1990; 342: 177–181.

    CAS  Google Scholar 

  110. Kanemura T, Tamaoki J, Horii S, Sakai N, Kobayashi K, Isono K, Takeuchi S, Takizawa T. CGRP augments parasympathetic contraction of rabbit tracheal smooth muscle in vitro. Agents Actions 1990; 31: 219–224.

    PubMed  CAS  Google Scholar 

  111. Butler A, Worton SP, O’Shaughnessy CT, Connor HE. Sensory nerve-mediated relaxation of guinea-pig pulmonary artery: Prejunctional modulation by alpha 2 adrenoceptor agonists but not sumatriptan. Br J Pharmacol 1993; 109: 126–130.

    PubMed  CAS  Google Scholar 

  112. Manzini S, Maggi CA, Geppetti P, Bacciarelli C. Capsaicin desensitization protects from antigen induced bronchospasms in conscious guinea-pigs. Eur J Pharmacol 1987; 138: 307–308.

    PubMed  CAS  Google Scholar 

  113. Martling CR, Lundberg JM. Capsaicin-sensitive afferents contribute to acute airway edema following tracheal instillation of hydrochloric or gastric juice in the rat. Anesthesiology 1988; 68: 350–356.

    PubMed  CAS  Google Scholar 

  114. Solway J, Kao BM, Jordan JE, Gitter B, Rodger IW, Howbert JJ, Alger LE, Necheles J, Leff AR, Garland A. Tachykinin receptor antagonists inhibit hyperpnea-induced bronchoconstriction in guinea-pigs. J Clin Invest 1993; 92: 315–323.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Maggi, C.A. (1995). Tachykinins and Calcitonin Gene-Related Peptide. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Peptide Receptors, Ion Channels and Signal Transduction. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7362-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7362-8_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7364-2

  • Online ISBN: 978-3-0348-7362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics