Skip to main content

Abstract

The abnormal airway conditions in patients with cystic fibrosis (CF) predisposes them to pulmonary infection with a number of bacterial species including Staphylococcus aureus, Haemophilus influenzae, Pseudomonas aeruginosa, Pseudomonas cepacia, Xanthomonas species and various non-tuberculous mycobacteria. Patients with CF may initially become infected with a number of bacterial species including S. aureus [1] and H. influenzae [2], however Pseudomonas aeruginosa is the principal respiratory tract pathogen leading to chronic infection in these patients [3]. Once CF patients are colonized with P. aeruginosa, the organism is rarely eradicated. Another species, Pseudomonas cepacia, is an evolving pathogen in CF infection [4, 5]; its resistance to many antibiotics, enhanced virulence in certain CF patients [6] and the capacity to spread from patient to patient [7] have introduced a new set of problems to CF caregivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marks MI. Clinical significance of Staphylococcus aureus in cystic fibrosis. Infection 1990; 18: 53–56.

    Article  PubMed  CAS  Google Scholar 

  2. Greenberg DP, Stutman HR. Infection and Immunity to Staphyloccocus aureus and Haemophilus influen_ae. In: Moss, RB editor. Cystic Fibrosis. Totowa. New Jersey. Humana Press. 1990; 75–86.

    Chapter  Google Scholar 

  3. Doggett RG, Harrison GM, Stillwell RN, Wallis ES. An atypical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas. J Pediatr 1966: 68: 215–221.

    Article  Google Scholar 

  4. Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P. Pseudomonas cepacia infection in cystic fibrosis: An emerging problem. J Pediatr 1984; 104: 206–210.

    Article  PubMed  CAS  Google Scholar 

  5. Lewin LO, Byard PJ, Davis PB. Effect of Pseudomonas cepacia colonization on survival and pulmonary function of cystic fibrosis patients. J Clin Epidemiol 1990; 43: 125–131.

    Article  PubMed  CAS  Google Scholar 

  6. Tablan OC, Martone WJ, Doershuck CF, Stern RC, Thomassen MJ, Klinger JW, et al. Colonization of the respiratory tract with Pseudomonas cepacia in cystic fibrosis: risk factors and outcome. Chest 1987; 91: 527–532.

    Article  PubMed  CAS  Google Scholar 

  7. Govan JRW, Brown PH, Maddison J. Doherty CJ. Nelson JW, Dodd M et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet. 1993; 342: 15–19.

    Article  PubMed  CAS  Google Scholar 

  8. Govan JRW, Nelson JW. Microbiology of lung infection in cystic fibrosis. British Medical Bulletin. 1992; 48: 912–930.

    PubMed  CAS  Google Scholar 

  9. Ramphal R. Pyle M. Adherence of mucoid and nonmucoid Pseudomonas aeruginosa to acid-injured tracheal epithelium. Infect Immun 1983; 41: 345–351.

    PubMed  CAS  Google Scholar 

  10. Woods DE, Bass JA, Johanson WG. Straus DC. Role of adherence in the pathogenesis of Pseudomonas aeruginosa lung infection in cystic fibrosis patients. Infect Immun 1980; 30: 694–699.

    PubMed  CAS  Google Scholar 

  11. Woods DE. Straus DC, Johanson WG, Bass JA. Role of fibronectin in the prevention of adherence of Pseudomonas aeruginosa to buccal cells. J Infect Dis 1981; 143: 784–790.

    Article  PubMed  CAS  Google Scholar 

  12. Saiman L, Cacalano G, Gruenert D, Prince A. Comparison of adherence of Pseudomonas aeruginosa to respiratory epithelial cells from cystic fibrosis patients and healthy subjects. Infect Immun 1992; 60: 2808–2814.

    PubMed  CAS  Google Scholar 

  13. Nelson JW, Tredgett MW, Sheehan JK, Thorton DJ, Notman D, Govan JRW. Mucinophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis. Infect Immun 1990: 58: 1489–1495.

    PubMed  CAS  Google Scholar 

  14. Ramphal R, Pyle M. Evidence for mucins and sialic acid as receptors for Pseudomonas aeruginosa in the lower respiratory tract. Infect Immun 1983; 41: 339–344.

    PubMed  CAS  Google Scholar 

  15. Speert DP, Gordon S. Phagocytosis of unoponized Pseudomonas aeruginosa by murine macrophages is a two-step process requiring glucose. J Clin Invest 1992; 90: 1085–1092.

    Article  PubMed  CAS  Google Scholar 

  16. Valeyre D, Soler P, Bassert G, Loiseau P, Pre J, Turbie P et al. Glucose, K’, and albumin concentrations in the alveolar milieu of normal and pulmonary sarcoidosis patients. Am Rev Respir Dis 1991; 143: 1096–1101.

    PubMed  CAS  Google Scholar 

  17. Sanchis J, Dolovich M, Roosman C, Wilson W, Newhouse M. Pulmonary mucociliary clearance in cystic fibrosis. N Engl J Med 1973; 288: 651–654.

    Article  PubMed  CAS  Google Scholar 

  18. Folklhard W, Marvin DA, Watts TH. Paranchych W. Structure of polar pili from Pseudomonas aeruginosa strains K and O. J Mol Biol 1981; 149: 79–93.

    Article  Google Scholar 

  19. Frost LS, Paranchych W. Composition and molecular weight of pili purified from Pseudomonas aeruginosa. J Bacteriol 1977; 131: 259–269.

    PubMed  CAS  Google Scholar 

  20. Pasloske BL, Finlay BB, Parachych. Cloning and sequencing of Pseudomonas aeruginosa PAK pilin gene. FEBS Lett 1985; 183: 408–412.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson K, Parker ML, Lory S. Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J Biol Chem 1986; 261: 15703–15708.

    PubMed  CAS  Google Scholar 

  22. Pasloske BL, Sastry PA, Finlay BB, Paranchych W. Two unusual pilin sequences from different isolates of Pseudomonas aeruginosa. J Bacteriol 1988; 170: 3738–3741.

    Google Scholar 

  23. Woods DE, Straus DC, Johanson WG Jr., Berry VK, Bass JA. Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 1980; 29: 1146–1151.

    PubMed  CAS  Google Scholar 

  24. Ramphal R, Sadoff JC, Pyle M, Silipigni JD. Role of pili in the adherence of Pseudomonas aeruginosa to injured tracheal epithelium. Infect Immun 1984; 44: 38–40.

    PubMed  CAS  Google Scholar 

  25. Marcus H. Baker NR. Quantitation of adherence of mucoid and nonmucoid Pseudomonas aeruginosa to hamster tracheal epithelium. Infect Immun 1985; 47: 723–729.

    PubMed  CAS  Google Scholar 

  26. Saiman L. Ishimoto K. Lory S, Prince A. The effect of piliation and exoproduct expression on the adherence of Pseudomonas aeruginosa to respiratory epithelial mono-layers. J Infect Dis 1990; 161: 541–548.

    Article  PubMed  CAS  Google Scholar 

  27. Chi E, Mehl T, Nunn D, Lory S. 1991. Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells. Infect Immun 1991; 59: 822–828.

    Google Scholar 

  28. Pier GB, Meluleni G, Neuger E. A murine model of chronic mucosal colonization by Pseudomonas aeruginosa. Infect Immun 1992; 60: 4768–4776.

    PubMed  CAS  Google Scholar 

  29. Totten PA, Lara JC, Lory S. The rpoN gene of product of Pseudomonas aeruginosa is required for the expression of diverse genes, including the flagelin gene. J Bacteriol 1990; 172: 389–396.

    PubMed  CAS  Google Scholar 

  30. Ramphal R, Koo L, Ishimoto K, Totten P, Lara JC, Lory S. Adhesion of Pseudomonas aeruginosa pilin deficient mutants to mucin. Infect Immun 1991; 59: 1307–1311.

    PubMed  CAS  Google Scholar 

  31. Sajjen US, Reisman J, Doig P, Irvin RT, Forstner G, Forstner J. Binding of nonmucoid Pseudomonas aeruginosa to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. Infect Immun 1992; 60: 657–665.

    Google Scholar 

  32. Reddy MS. Human tracheobronchial mucin: purification and binding to Pseudomonas aeruginosa. Infect Immun 1992; 60: 1530–1535.

    PubMed  CAS  Google Scholar 

  33. Doig P. Todd T, Sastry PA, Lee KK, Hodges RS, Paranchych W et al. Role of pili in the adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun 1988; 56: 1641–1646.

    PubMed  CAS  Google Scholar 

  34. Irvin RT, Doig P, Lee KK, Sastry PA, Paranchych W. Tood T et al. Characterization of the Pseudomonas aeruginosa pilus adhesion: Confirmation that the pilin structural protein subunit contains a human epithelial cell binding domain. Infect Immun 1989; 57: 3720–3726.

    PubMed  CAS  Google Scholar 

  35. Lee KK, Doig P, Irvin RT, Paranchych W, Hodges RS. Mapping the surface regions of Pseudomonas aeruginosa pili: The importance of the C-terminal region for adherence to human buccal epithelial cells. Molec Microbiol 1989; 3: 1493–1499.

    Article  CAS  Google Scholar 

  36. Simpson DA, Ramphal R, Lory S. Genetic analysis of Pseudomonas aeruginosa adherence: distinct genetic loci control attachment to epithilial cells and mucins. Infect Immun 1992; 60: 3771–3779.

    PubMed  CAS  Google Scholar 

  37. Ramphal R, Houdret L, Koo L, Lamblin G, Roussel P. Differences in adhesion of Pseudomonas aeruginosa to mucin glycopeptides from sputa patients with cystic fibrosis and chronic bronchitis. Infect Immun 1989; 57: 3066–3071.

    PubMed  CAS  Google Scholar 

  38. Ramphal R, Carnoy C, Fievre S, Michalski JC, Houdret N, Lamblin G et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Galßl-3GIcNAc) or type 2 (Galß1–4GIcNAc) disaccharide units. Infect Immun 1991; 59: 700–704.

    PubMed  CAS  Google Scholar 

  39. Linker A, Jones RS. 1966. A new polysaccharide resembling alginic acid isolated from Pseudomonas. J Biol Chem 1966; 241: 3845–3851.

    Google Scholar 

  40. Hoiby N, Rosendal K. Epidemiology of Pseudomonas aeruginosa infection in patients treated at a cystic fibrosis center. Acta Pathol Microbiol Scand Sect B 1980; 88: 125–131.

    CAS  Google Scholar 

  41. Ramphal R, Pier GB. Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence of tracheal cells. Infect Immun 1985; 47: 1–4.

    PubMed  CAS  Google Scholar 

  42. Doig P, Smith NR, Todd T, Irvin RT. Characterization of the binding of Pseudomonas aeruginosa to human epithelial cells. Infect Immun 1987; 55: 1517–1522.

    PubMed  CAS  Google Scholar 

  43. Pier GB, DesJardin D, Aguilar T, Barnard M, Speert DP. Polysaccharide surface antigens expressed by nonmucoid isolates of Pseudomonas aeruginosa from cystic fibrosis patients. J Clin Microbiol 1986; 24: 189–196.

    PubMed  CAS  Google Scholar 

  44. Gilardi GL. Pseudomonas. In: Manual of Clinical Microbiology. Lennette EH, editor. American Society for Microbiology, Washington D.C. 1985; pp. 350–372.

    Google Scholar 

  45. McManus AT, Moody EE, Mason AD. Bacterial motility: a component in experimental Pseudomonas aeruginosa burn wound species. Burns 1980; 6: 235–239.

    Article  Google Scholar 

  46. Montie TC, Doyle-Huntzinger D, Craven R, Holder IA. Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned mouse model. Infect Immun 1982: 38: 1296–1298.

    PubMed  CAS  Google Scholar 

  47. Drake D, Montie TC. 1988. Flagella, motility and invasive virulence of Pseudomonas aeruginosa. J Gen Microbiol 1988; 134: 43–52.

    Google Scholar 

  48. Luzar MA, Thomassen MJ, Montie TC. Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cysitc fibrosis: relationship to patient clinical condition. Infect Immun 1985; 50: 577–582.

    PubMed  CAS  Google Scholar 

  49. Mahenthiralingam E, Campbell ME, Speert DP. Non-motility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 1994; 62: 596–605.

    PubMed  CAS  Google Scholar 

  50. Woods DE, Iglewski BH. Toxins of Pseudomonas aeruginosa: New perspectives. Rev Infect Dis 1983; 5: 715–722.

    Article  CAS  Google Scholar 

  51. Speert DP. Host defenses in patients with cystic fibrosis: modulation by Pseudomonas aeruginosa. Sury Synth Path Res 1985; 4: 14–33.

    CAS  Google Scholar 

  52. Woods DE, Sokol PA. Role of Pseudomonas aeruginosa extracellular enzymes in lung disease. Clin Invest Med 1986; 9: 108–112.

    PubMed  CAS  Google Scholar 

  53. Wick MJ, Frank DW, Storey DG, Iglewski BH. Structure, function and regulation of Pseudmonas aeruginosa exotoxin A Ann Rev Microbiol 1990; 44: 335–363.

    Article  CAS  Google Scholar 

  54. Woods DE, To M, Sokol PA. 1989. Pseudomonas aeruginosa exoenzyme S as a pathogenic determinant in respiratory infection. Antibiot Chemother 1989; 44: 27–35.

    Google Scholar 

  55. Woods DE, Cryz SJ, Friedman RL, Iglewski BH. Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats. Infect Immun 1982; 36: 1223–1228.

    PubMed  CAS  Google Scholar 

  56. Guzzo J, Murgier M, Filloux A, Lazdunski A. Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coll. J Bacteriol 1990; 172: 942–948.

    PubMed  CAS  Google Scholar 

  57. Goldberg JB, Ohman DE. Cloning and transcriptional regulation of the elastase lasA gene in mucoid and non-mucoid Pseudomonas aeruginosa. J Bacteriol 1987; 169: 1349 1351.

    Google Scholar 

  58. Schad PA, Bever RA, Nicas TI, Leduc F, Hanne LF, Iglewski BH. Cloning and characterization of the elastase genes from Pseudomonas aeruginosa. J Bacteriol 1987: 169: 2691–2696.

    PubMed  CAS  Google Scholar 

  59. Peters JE, Galloway DR. Purification and characterization of an active fragment of the LasA protein from Pseudomonas aeruginosa: enhancement of elastase activity. J Bacteriol 1990; 2236–2240.

    Google Scholar 

  60. Toder DS, Gambello MJ, Igeewski BH. Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol 1991; 5: 2003–2010.

    Article  PubMed  CAS  Google Scholar 

  61. Wolz C, Hellstem E, Haug M, Galloway DR, Vasil ML, Döring G. Pseudomonas aeruginosa lasB mutant constructed by insertional mutagenesis reveals elastolytic activity due to alkaline proteinase and LasA fragment. Mol Microbiol 1991; 5: 2125–2131.

    Article  PubMed  CAS  Google Scholar 

  62. Kessler E, Safrin M, Olson JC, Ohman DE. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 1993; 268: 7503–7508.

    PubMed  Google Scholar 

  63. Döring G, Obernesser HJ, Bozenhardt K, Flehming B, Holly N, Hofmann A. Protease of Pseudomonas aeruginosa in patients with cystic fibrosis. J Infect Dis 1983; 147: 744–750.

    Article  PubMed  Google Scholar 

  64. Klinger JD, Straus DC, Hilton CB, Bass JA. Antibodies to proteases and exotoxin A of Pseudomonas aeruginosa in patients with cystic fibrosis: demonstration by radioimmunoassay. J Infect Dis 1978; 138: 49–58.

    Article  PubMed  CAS  Google Scholar 

  65. Heck LW, Morihara K, McRae WB, Miller EJ. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginonsa elastase. Infect Immun 1986; 51: 115–118.

    PubMed  CAS  Google Scholar 

  66. Heck LW, Morihara K, Abrahamson DR. Degradation of soluble laminin and depletion of tissue-associated basement membrane laminin by Pseudomonas aeruginosa elastase and alkaline protease. Infect Immun 1986; 54: 149–153.

    PubMed  CAS  Google Scholar 

  67. Hinglay ST, Hastie AT, Kueppers F, Higgins LM. Disruption of respiratory cilia by proteases including those of Pseudomonas aeruginosa. Infect Immun 1986; 54: 379–385.

    Google Scholar 

  68. Sorensen RU, Klinger JD, Cash HA, Chase PA, Dearborn DG. In vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments. Infect Immun 1983; 41: 321–330.

    PubMed  CAS  Google Scholar 

  69. Miller KM, Dearborn DG, Sorensen RU. In vitro effect of synthetic pyocyanine on neutrophil superoxide production. Infect Immun 1987; 55: 559–563.

    PubMed  CAS  Google Scholar 

  70. Wilson R, Roberts D, Cole P. Effect of bacterial products on human ciliary function in vitro. Thorax 1985; 40: 125–131.

    Article  PubMed  CAS  Google Scholar 

  71. Sokol PA, Woods DE. Relationship of iron and extracellular virulence factors to Pseudomonas aeruginosa lung infections. J Med Microbiol 1984; 18: 125–133.

    Article  PubMed  CAS  Google Scholar 

  72. Ankenbauer R, Sriyosachati S, Cox CD. Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infect Immun 1985; 49: 132–140.

    PubMed  CAS  Google Scholar 

  73. Döring G, Pfestorf M, Botzenhardt K, Abdallah MA. Impact of proteases on iron uptake of Pseudomonas aeruginosa pyoverdin from transferrin and lactoferrin. Infect Immun 1988; 56: 291–293.

    PubMed  Google Scholar 

  74. Pier GB. Saunders JM. Ames P, Edwards MS. Auerbac H, Goldfrab J et al. Opsonophagocytic killing antibody to Pseudomonas aeruginosa mucoid exopolysaccharide in older noncolonized patients with cystic fibrosis. N Engl J Med 1987; 317: 793–798.

    Article  PubMed  CAS  Google Scholar 

  75. Speert DP, Lawton D, Mutharia L. Antibody to Pseudomonas aeruginosa mucoid exopolysaccharide and to sodium alginate in cystic fibrosis serum. Pediatr Res 1984; 18: 431–433.

    Article  PubMed  CAS  Google Scholar 

  76. Speert DP. Dimmick JE, Pier GB, Saunders JM, Hancock REW, Kelly N. An immunohistological evaluation of Pseudomonas aeruginosa infection in two patients with cystic fibrosis. Pediatric Res 1987; 22: 743–747.

    Article  CAS  Google Scholar 

  77. Lam J, Chan R. Lam K, Costerton JW. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 1980: 28: 546–556.

    PubMed  CAS  Google Scholar 

  78. Costerton JW, Cheng KJ. Geesey GG. Ladd TI, Nickel JC. Dasgupta M et al. Bacterial biofilms in nature and disease. Ann Rev Microbiol 1987: 41: 435–464.

    Article  CAS  Google Scholar 

  79. Baltimore RS, Shedd DG. The role of complement in the opsonization of mucoid and non-mucoid strains of Pseudomonas aeruginosa. Paediatric Res 1983: 17: 952–958.

    Article  CAS  Google Scholar 

  80. Cabral DA, Loh BA. Speert DP. Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages. Paediatric Research 1987; 22: 429–431.

    Article  CAS  Google Scholar 

  81. Krieg DP, Helmke RJ. German VF, Mangos JS. Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages in vitro. Infect Immun 1988: 56: 3172–3179.

    Google Scholar 

  82. Speert DP. Farmer SW, Campbell ME, Musser JM, Selander RK. Kuo S. Conversion of Pseudomonas aeruginosa to the phenotype characteristic of strains from patients with cystic fibrosis. J Clin Microbiol 1990; 28: 188–194.

    PubMed  CAS  Google Scholar 

  83. Terry JM, Pina SE, Mattingly SJ. Environmental conditions which influence mucoid conversion in Pseudomonas aeruginosa PA01. Infect Immun 1991; 59: 471–477.

    PubMed  CAS  Google Scholar 

  84. Berry A. DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa. J Bacteriol 1989; 171: 2312 2317.

    Google Scholar 

  85. Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 1983; 221: 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  86. Deretic V, Govan JRW, Konyecsni WM, Martin DW. Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the mue loci affect transcription of the a1gR and algD genes in response to environmental stimuli. Mol Microbiol 1990; 4: 189–196.

    Article  PubMed  CAS  Google Scholar 

  87. Hancock REW, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, non-typable strains deficient in lipopolysaccharide O side chains. Infect Immun 1983; 42: 170–177.

    PubMed  CAS  Google Scholar 

  88. Fegan M, Francis P, Hayward AC, Davis GHG, Fuerst JA. Phenotypic conversion of Pseudomonas aeruginosa in cystic fibrosis. J Clin Microbiol 1990; 28: 1143–1146.

    PubMed  CAS  Google Scholar 

  89. Burke V, Robinson JO, Richardson CJL, Bundell CS. Lonitudinal studies of virulence of Pseudomonas aeruginosa in cystic fibrosis. Pathology 1991; 23: 145–148.

    Article  PubMed  CAS  Google Scholar 

  90. Stiver HG, Zachidniak K, Speert DP. Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudomonas aeruginosa. J Clin Invest Med. 1988; 11: 247–252.

    CAS  Google Scholar 

  91. Kharazmi A, Eriksen HO, Döring G, Goldstein W, Heiby N. Effect of Pseudomonas aeruginosa proteases on human leukocyte phagocytosis and bacterial activity. Acta Pathol Microbiol Immunol Scand Sect C 1986; 94: 175–179.

    CAS  Google Scholar 

  92. Berger M, Sorensen RU, Tosi MF, Dearborn DG, Döring G. Complement receptor expression on neutrophils at an inflammatory site. J Clin Invest 1989; 84: 1302–1313.

    Article  PubMed  CAS  Google Scholar 

  93. Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized Pseudomonas as well as CRI on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 1990; 86: 300–308.

    Article  PubMed  CAS  Google Scholar 

  94. Pollack M, Anderson SE Jr. Toxicity of Pseudomonas aeruginosa exotoxin A for human macrophages. Infect Immun 1978; 19: 1092–1096.

    PubMed  CAS  Google Scholar 

  95. Scharmann W. Interaction of purified leukocidin from Pseudomonas aeruginosa with bovine polymorphonuclear leukocytes. Infect Immun 1976; 13: 1046–1053.

    PubMed  CAS  Google Scholar 

  96. Barghouthi S, Everett KDE, Speert DP. Nonopsonic phagocytosis of Pseudomonas aeruginosa requires facilitated transport of D-glucose by macrophages. J Immunol 1995; 154: 3420–3428.

    PubMed  CAS  Google Scholar 

  97. Luzar MA. Montie TC. Avirulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa. Infect Immun 1985; 50: 572–576.

    PubMed  CAS  Google Scholar 

  98. Helman J, Chamberlin MJ. Structure and function of bacterial sigma factors. Ann Rev Biochem 1988; 57: 839–872.

    Article  Google Scholar 

  99. Deretic V, Gill JF. Chakrabarty AM. Gene algD for the GDP-mannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol 1987: 169: 351–358.

    PubMed  CAS  Google Scholar 

  100. Miller JF. Mekalanos JJ, Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 1989; 243: 916–922.

    Article  PubMed  CAS  Google Scholar 

  101. Mohr CD. Hibler NS, Deretic V. AIgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa binds to the FUS sites of the a/gD promoter located unusually far upstream from the mRNA start site. J Bacteriol 1991; 173: 5136–5143.

    PubMed  CAS  Google Scholar 

  102. Kustu S, Santero E, Keener J, Popham D, Weiss D. Expression of o54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Revs 1989; 53: 367–376.

    CAS  Google Scholar 

  103. Wozniak DJ, Ohman DE. Pseudomonas aeruginosa AIgB, a two component response regulator of the NtrC family. is required for algD-transcription. J Bacteriol 1991; 173: 1406–1413.

    PubMed  CAS  Google Scholar 

  104. Deretic V, Mohr CD, Martin DW. Mucoid Pseudomonas aeruginosa in cystic fibrosis: signal transduction and histone-like elements in the regulation of bacterial virulence. Mol Microbiol 1991; 5: 1577–1583.

    Article  PubMed  CAS  Google Scholar 

  105. Martin DW, Holloway BW, Deretic V. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AIgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 1993; 175: 1153–1164.

    PubMed  CAS  Google Scholar 

  106. Dubnau E, Weir J, Nair G, Carter III L, Moran Jr. C, Smith I. Bacillus sporulation gene spoOH codes for a30 (a“). J Bacteriol 1988; 170: 1054–1062.

    PubMed  CAS  Google Scholar 

  107. Martin DW, Schurr MJ, Mudd MH, Deretic V. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 1993; 9: 497–506.

    Article  PubMed  CAS  Google Scholar 

  108. Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 1991; 173: 3000–3009.

    PubMed  CAS  Google Scholar 

  109. Gambello MJ, Kaye S, Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 1993; 61: 1180–1184.

    PubMed  CAS  Google Scholar 

  110. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993; 260: 1127 1130.

    Google Scholar 

  111. Ishimoto KS. Lory S. Formation of pilin in Pseudomonas aeruginosa requires the alternative a factor (RpoN) of RNA polymerase. Proc Natl Acad Sci USA. 1989; 86: 1954–1957.

    Article  PubMed  CAS  Google Scholar 

  112. Sage A, Linker A, Evan LR, Lessie TG. Hexose-phosphate metabolism and exopolysaccharide formation in Pseudomonas cepacia. Can J Microbiol 1990; 20: 191–198.

    CAS  Google Scholar 

  113. McKevitt AI, Bajaksouzian S, Klinger JD, Woods DE. Purification and characterization of an extracellular protease of Pseudomonas cepacia. Infect Immun 1989; 57: 771–778.

    PubMed  CAS  Google Scholar 

  114. Vasil ML, Krieg DP, Kuhns JS, Ogle JW, Shortidge VD, Ostroff RM et al. Molecular analysis of hemolytic and phospholipase C activities of Pseudomonas cepacia. Infect Immun 1990; 58: 4020–4029.

    PubMed  CAS  Google Scholar 

  115. Kuehn A, Lent K, Haas J, Hagenzieker J, Cervin M, Smith A. Fimbriation of Pseudomonas cepacia. Infect Immun 1992; 60: 2002–2007.

    PubMed  CAS  Google Scholar 

  116. Krivan HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcß1–4Gal found in some glycolipids. Proc Natl Acad Sci USA 1988; 85: 6157–6161.

    Article  PubMed  CAS  Google Scholar 

  117. Sajjan US, Corey M, Karmali MA, Forstner JF. Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 1992; 89: 648–656.

    Article  PubMed  CAS  Google Scholar 

  118. Saiman L, Cacalano G, Prince A. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa. Infect Immun 1990; 58: 2578–2584.

    PubMed  CAS  Google Scholar 

  119. Sajjan US, Forstner JF. Role of a 22-kilodalton pilin protein in binding of Pseudomonas cepacia to buccal epithelial cells. Infect Immun 1993; 61: 3157–3163.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Mahenthiralingam, E., Speert, D.P. (1996). Microbial Virulence and Pathogenesis in Cystic Fibrosis. In: Bauernfeind, A., Marks, M.I., Strandvik, B. (eds) Cystic Fibrosis Pulmonary Infections: Lessons from Around the World. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7359-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7359-8_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7361-1

  • Online ISBN: 978-3-0348-7359-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics