Skip to main content

Oxidative stress and its relationship to carcinogen activation

  • Conference paper
Oxidative Stress and Aging

Part of the book series: Molecular and Cell Biology Updates ((MCBU))

Summary

Understanding the mechanism of activation of xenobiotics to biologically reactive derivatives as well as the resultant critical biological modifications provides a basis for both predicting toxicological risk and developing protective strategies. The ability of xenobiotics to undergo metabolic activation to genotoxic derivatives is a fundamental concept in chemical carcinogenesis. There are a number of enzymatic and non-enzymatic processes which can convert chemicals to biologically reactive intermediates. These processes include enzymes, such as cytochrome P-450 and prostaglandin H synthase, lipid peroxidation and the interaction of chemicals with oxidants derived from cells and metals.

Inflammatory cells, such as polymorphonuclear leukocytes (PMNs), are particularly adept at generating and releasing a spectrum of oxidative species. Of particular importance to PMN-mediated xenobiotic activation processes is myeloperoxidase (MPO). For example, MPO can activate benzo(a)pyrene-7,8-dihydrodiol (BP-7,8-diol), the proximate carcinogenic metabolite of benzo(a)pyrene, to a (+)anti-diolepoxide resulting in covalent binding to DNA and the induction of mutagenesis in bacteria and sister chromatid exchanges in V-79 cells. Human PMNs are particularly effective because of their high MPO content relative to PMNs from mice and rats. PMNs elicited to the skin by phorbol ester treatment have been implicated in the activation of BP-7,8-diol in vivo. Such observations are important with regard to organs where PMNs are normally found, such as the bone marrow.

Metal-mediated oxidative processes can also result in the activation of xenobiotics, particular those with phenolic groups. Recent studies have demonstrated that copper(II) can oxidize 1,4-hydroquinone (HQ), a metabolite of benzene, resulting in the generation of benzoquinone (BQ) and 11202. BQ is an electrophile which is reactive toward sulfhydryl groups and DNA bases. The subsequent interaction of the H2O2 with copper(I) results in the generation of ESR detectable species which can elicit DNA strand breaks. Thus it appears that through metalredox cycle reactions the localized activation of some xenobiotics can result in genotoxic and DNA damaging oxidants. In addition to copper, the copper-containing enzyme, Cu,Zn-superoxide dismutase is capable of accelerating the oxidation of HQ, resulting in the generation of BQ and reactive oxygen species which cause DNA strand breaks in øX-174 plasmid DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, K., Sharma, A. and Talukder, G. (1989) Effects of copper on mammalian cell components. Chem. -Biol. Interact. 69, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, M.S., Fazal, F., Rahman, A., Hadi, S.M. and Parish, J.H. (1992) Activities of flavonoids for the cleavage. of DNA in the presence of Cu(II): Correlation with generation of reactive oxygen species. Carcinogenesis 13: 605–608.

    Article  CAS  Google Scholar 

  • Akman, S.A., Doroshow, J.H. and Kensler, T.W. (1992) Copper-dependent site-specific mutagenesis by benzoyl peroxide in the sup F gene of the mutation reporter plasmid pS189. Carcinogenesis 13: 1783–1787.

    Article  PubMed  CAS  Google Scholar 

  • Akman, S.A., Kensler, T.W., Doroshow, J.H. and Dizdaroglu, M. (1993) Copper ion-mediated modification of bases in DNA in vitro by benzoyl peroxide. Carcinogenesis 14: 1971–1974.

    Article  PubMed  CAS  Google Scholar 

  • Bandy, B., Moon, J. and Davison, A.J. (1990) Multiple actions of superoxide dismutase: Why can it both inhibit and stimulate reduction of oxygen by hydroquinones? Free Radical Biol. Med. 9: 143–148.

    Article  CAS  Google Scholar 

  • Barak, M., Ulitzur, S. and Merzbach, D. (1983) Phagocytosis-induced mutagenesis in bacteria. Mut. Res. 121: 716.

    Article  Google Scholar 

  • Birnboim, H.C. (1982) DNA strand breakage in human leukocytes exposed to a tumor promoter, Phorbol-myristate acetate. Science 215: 1247–1249.

    CAS  Google Scholar 

  • Bryan, S.E., Vizard, D.L., Beary, D.A., La Biche, R.A. and Hardy, K.J. (1981) Partitioning of zinc and copper within subnuclear nucleoprotein particles. Nucleic Acid Res. 9: 5811–5823.

    Article  PubMed  CAS  Google Scholar 

  • Cadenas, E., Mira, D., Brunmark, A., Lind, C., Segura-Aguilar, J. and Ernster, L. (1988) Effect of superoxide dismutase on the autoxidation of various hydroquinones-A possible role of superoxide dismutase as a superoxide:semiquinone oxidoreductase. Free Radical Biol. Med. 5: 71–79.

    Article  CAS  Google Scholar 

  • Cerutti, P.A. and Trump, B.F. (1991) Inflammation and oxidative stress in carcinogenesis. Cancer Cells 3: 1–7.

    PubMed  CAS  Google Scholar 

  • Dekant, W. (1993) Bioactivation of nephrotoxins and renal carcinogens by glutathione S-conjugate formation. Toxicol. Lett. 67: 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Eastmond, D.A., French, R.C., Ross, D. and Smith, M.T. (1987) Metabolic activation of diethylstilbestrol by stimulated human leukocytes. Cancer Lett. 35: 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Eling, T.E. and Curtis, J.F. (1992) Xenobiotic metabolism by prostaglandin H synthase. Pharmac. Ther. 53: 261–273.

    Article  CAS  Google Scholar 

  • Emerit, I. and Cerutti, P. (1981) Tumor promoter phorbol-l2-myristate-13-acetate induces chromosomal damage via indirect action. Nature 293: 144–146.

    Article  PubMed  CAS  Google Scholar 

  • Eyer, P. (1991) Effects of superoxide dismutase on the autoxidation of 1,4-hydroquinone. Chem. -Biol. Interact. 80: 159–176.

    Article  PubMed  CAS  Google Scholar 

  • Esterline, R.L., Bassett, D.J.P. and Trush, M.A. (1989) Characterization of the oxidant generation by inflammatory cells lavaged from rat lungs following acute exposure to ozone. Toxicol. Appl. Pharmacol. 99: 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Geierstanger, B.H., Kagawa, T.F., Chen, S.-L., Quigley, G.T. and Ho, P.S. (1991) Base-specific binding of copper(II) to Z-DNA: the 1.3-A single crystal structure of d(m5CGUAm5CG) in the presence of CuC12. J. Biol. Chem. 26: 20185–20191.

    Google Scholar 

  • Guengerich, F.P. (1992) Metabolic activation of carcinogens. Pharmac. Ther. 54: 17–61.

    Article  CAS  Google Scholar 

  • Guyton, K.Z., Thompson, J.A. and Kensler, T.W. (1993) Role of quinone methide in the in vitro toxicity of the skin tumor promoter butylated hydroxytoluene hydroperoxide. Chem. Res. Toxicol. 6: 731–738.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1990) Role of free radicals and catalytic metal ions in human disease: An overview. In: L. Packer (ed.): Methods in Enzymology, Vol. 186, Academic Press, Inc., New York, pp 1–85

    Google Scholar 

  • Hofstra, A.H. and Uetrecht, J.P. (1993) Myeloperoxidase-mediated activation of xenobiotics by human leukocytes. Toxicol. 82: 221–242.

    Article  CAS  Google Scholar 

  • Howell, J.M. and Gawthorne, J.M. (1987) Copper in Animal and Man. Vol. 1 and 2, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Hurst, J.K. and Barrette, W.C. (1989) Leukocytic oxygen activation and microbicidal oxidative toxins. Crit. Rev. Biochem. Molecular Biol. 24: 271–328.

    Google Scholar 

  • Inoue, S., Yamamoto, K. and Kawanishi, S. (1990) DNA damage induced by metabolites of o-phenylphenol in the presence of copper(II) ion. Chem. Res. Toxicol. 3: 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Irons, R.D. (1985) Quinones as toxic metabolites of benzene. J. Toxicol. Environ. Health. 16: 673–678.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, T. and Fridovich, I. (1990) Dual effects of superoxide dismutase on the autoxidation of 1,4-naphthohydroquinone. Free Radical Biol. Med. 8: 21–24.

    Article  CAS  Google Scholar 

  • Ji, C. and Marnett, L.J. (1992) Oxygen radical-dependent epoxidation of (7S,8S)-dihydroxy-7,8-dihydrobenzo[a]pyrene in mouse skin in vivo: Stimulation by phorbol esters and inhibition by antiinflammatory steroids. J. Biol. Chem. 267: 17842–17848.

    PubMed  CAS  Google Scholar 

  • Kari, F.W., Bucher, J., Eustis, S.L., Haseman, J.K. and Huff, J.E. (1992) Toxicity and carcinogenicity of hydroquinone in F344/N rats and B6C3F1 mice. Fd. Chem. Toxicol. 30: 737–747.

    Article  CAS  Google Scholar 

  • Karlin, K.D., Ghost, P., Cruse, R.W., Farooq, A., Gultneh, Y., Jacobson, R.R., Blackburn, N.J., Strange, R.W. and Zubieta, J. (1988) Dioxygen-copper reactivity: Generation, characterization, and reactivity of a hydroperoxodicopper(II) complex. J. Am. Chem. Soc. 110: 6769–6780.

    Article  CAS  Google Scholar 

  • Kawanishi, S., Inoue, S. and Kawanishi, M. (1989) Human DNA damage induced by 1,2,4-benzenetriol, a benzene metabolite. Cancer Res. 49: 164–168.

    PubMed  CAS  Google Scholar 

  • Kehrer, J.P., Mossman, B.T., Sevanian, A., Trush, M.A. and Smith, M.T. (1988) Free radical mechanisms in chemical pathogenesis. Toxicol. Appl. Pharmacol. 95: 349–362.

    Article  PubMed  CAS  Google Scholar 

  • Kensler, T.W., Egner, P.A., Moore, K.G., Taff, B.G., Twerdok, L.E. and Trush, M.A. (1987) Role of inflammatory cells in the metabolic activation of polycyclic aromatic hydrocarbons in mouse skin. Toxicol. Appl. Toxicol. 90: 337–346.

    Article  CAS  Google Scholar 

  • Li, Y. and Trush, M.A. (1993a) Oxidation of hydroquinone by copper: chemical mechanism and biological effects. Arch. Biochem. Biophys. 300: 346–355.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. and Trush, M.A. (1993b) DNA damage resulting from the oxidation of hydroquinone by copper: Role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis 14: 1303–1311.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. and Trush, M.A. (1994) Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Cancer Res. 54: 1895–1898.

    Google Scholar 

  • Li, Y., Kuppusamy, P., Zweier, J.L. and Trush, M.A. (1993a) Generation of reactive oxygen from the copper-mediated oxidation of the benzene metabolite, 1,4-hydroquinone: role in DNA damage. Free Radical Biol. Med. 15: 540.

    Google Scholar 

  • Li, Y., Kuppusamy, P., Zweier, J.L. and Trush, M.A. (1993b) Chemical mechanism and biological effects of the SOD-accelerated oxidation of 1,4-hydroquinone. Free Radical Biol. Med. 15: 475.

    Article  Google Scholar 

  • Linder, M.C. (1991) Biochemistry of Copper. Plenum Press, New York.

    Google Scholar 

  • Malejka-Giganti, D., Ritter, C.L. and Willmott, L.D. (1993) Metabolism of the carcinogen N-hydroxy-N-2 fluorenylacetamide by rat peritoneal neutrophils. Carcinogenesis 14: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Mallet, W.G., Mosebrook, D.R. and Trush, M.A. (1991) Activation of (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to diolepoxides by human polymorphonuclear leukocytes or myeloperoxidase. Carcinogenesis 12: 521–524.

    Article  PubMed  CAS  Google Scholar 

  • Marnett, L.J. (1987) Peroxyl free radicals: Potential mediators of tumor initiation and promotion. Carcinogenesis 8: 1365–1373.

    Article  PubMed  CAS  Google Scholar 

  • Marnett, L.J. and Ji, C. (1994) Modulation of oxidant formation in mouse skin in vivo by tumor-promoting phorbol esters. Cancer Res. 1886–1889.

    Google Scholar 

  • Massa, E.M. and Giulivi, C. (1993) Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: An EPR study. Free Radical Biol. Med. 14: 559–565.

    CAS  Google Scholar 

  • Nohl, H., Jordan, W. and Youngman, R.J. (1986) Quinones in biology: Functions in electron transfer and oxygen activation. Adv. Free Radical Biol. Med. 2: 211–279.

    Article  CAS  Google Scholar 

  • O’Brien, P.J. (1991) Molecular mechanisms of quinone cytotoxicity. Chem. -Biol. Interact. 80: 1–41.

    Article  PubMed  Google Scholar 

  • O’Connell, J.F., Klein-Szanto, A.P., DiGiovanni, D.M., Fries, J.W. and Slaga, T.J. (1986) Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide. Cancer Res. 46: 2863–2865. O’Halloran, T.V. (1993) Transition metals in control of gene expression. Science 261: 715–725.

    Google Scholar 

  • Petruska, J.M., Mosebrook, D.R., Jakab, G.J. and Trush, M.A. (1992) Myeloperoxidase-enhanced formation of (±)trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene-DNA adducts in lung tissue in vitro: A role of pulmonary inflammation in the bioactivation of a procarcinogen. Carcinogenesis 13: 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  • Pezzano, H. and Podo, F. (1980) Structure of binary complexes of mono-and polynucleotides with metal ions of the first transition group. Chem. Rev. 80: 365–399.

    Article  CAS  Google Scholar 

  • Prutz, W.A., Butler, J. and Land, E.J. (1990) Interaction of copper(I) with nucleic acids. Int. J. Radiat. Biol. 58: 215–234.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, A., Shahabuddin, Hadi, S.M., Parish, J.H. and Ainley, K. (1989) Strand scission in DNA induced by quercetin and Cu(II): Role of Cu(I) and oxygen free radicals. Carcinogenesis 10: 1833–1839.

    CAS  Google Scholar 

  • Ramos, C.L., Pou, S., Britigan, B.E., Cohen, M.S. and Rosen, G.M. (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J. Biol. Chem. 267: 8307–8312.

    PubMed  CAS  Google Scholar 

  • Rao, G.S. (1991) Release of 2-thiobarbituric acid reactive products from glutamate, deoxyuridine or DNA during autoxidation of dopamine in the presence of copper ions. Pharmacol. Toxicol. 69: 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Reid, T.M. and Loeb, L.A. (1992) Mutagenic specificity of oxygen radicals produced by human leukemia cells. Cancer Res. 52: 1082–1086.

    PubMed  CAS  Google Scholar 

  • Rumyantseva, G.V., Kennedy, C.H. and Mason, R.P. (1991) Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals. J. Biol. Chem. 266: 21422–21427. Sandborg, R.R. and Smolen, J. E. (1988) Early biochemical events in leukocyte activation. Lab. Invest. 59: 300–320.

    Google Scholar 

  • Sato, K., Akaike, T., Kohno, M., Ando, M. and Maeda, H. (1992) Hydroxyl radical production by H202 plus Cu, Zn-superoxide dismutase reflects the activity of free copper released from the oxidatively damaged enzyme. J. Biol. Chem. 267: 25371–25377.

    PubMed  CAS  Google Scholar 

  • Seed, J.L., Kensler, T.W., Elia, M. and Trush, M.A. (1990) Induction of sister-chromatid exchanges by polycyclic aromatic hydrocarbons following metabolic activation with phorbol ester-stimulated human polymorphonuclear leukocytes. Res. Commun. Chem. Pathol. Pharmacol. 67: 349–360.

    CAS  Google Scholar 

  • Slaga, T.J., Klein-Szanto, A.P., Triplett, L. and Yotti, L.P. (1981) Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical generating compound. Science 213: 1023–1025.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.T., Yager, J.W., Steinmetz, K.L. and Eastmond, D.A. (1989) Peroxidase-dependent metabolism of benzenes phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ. Health Perspect. 82; 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, R., Witz, G. and Goldstein, D. (1993) The toxicology of benzene. Environ. Health Perspect. 100: 293306.

    Google Scholar 

  • Steinbeck, M.J., Khan, A.U. and Karnovsky, M.J. (1992) Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J. Biol. Chem. 267: 13425–13433.

    PubMed  CAS  Google Scholar 

  • Stich, H.F. (1991) The beneficial and hazardous effects of simple phenolic compounds. Mut. Res. 259: 307–324. Sutton, H.C. and Winterbourn, C.C. (1989) On the participation of higher oxidation states of iron and copper in Fenton reactions. Free Radical Biol. Med. 6, 53–60.

    Google Scholar 

  • Swauger, J.E., Dolan, P.M., Zweier, J.L., Kuppusamy, P. and Kensler, T.W. (1991) Role of the benzoyloxyl radical in DNA damage mediated by benzoyl peroxide. Chem. Res. Toxicol. 4: 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, D.C., Cha, Y.-N. and Trush, M.A. (1989) The peroxidase-dependent activation of butylated hydroxyanisole and butylated hydroxytoluene (BHT) to reactive intermediates: Formation of BHT-quinone methide via a chemical-chemical interaction. J. Biol. Chem. 264: 3957–3965.

    PubMed  CAS  Google Scholar 

  • Trush, M.A. (1984) Activation of bleomycin A2 to a DNA-damaging intermediate by phorbol ester-stimulated human polymorphonuclear leukocytes. Toxicol. Lett. 20: 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Trush, M.A. and Kensler, T.W. (1991a) Role of free radicals in carcinogen activation. In: H. Sies (ed.): Oxidative Stress: Oxidants and Antioxidants, Academic Press Ltd., London, pp 277–318.

    Google Scholar 

  • Trush, M.A. and Kensler, T.W. (1991b) An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radical. Biol. Med. 10: 201–209.

    Article  CAS  Google Scholar 

  • Trush, M.A., Mimnaugh, E.G. and Gram, T.E. (1982) Activation of pharmacologic agents to radical intermediates: Implications for the role of free radicals in drug action and toxicity. Biochem. Pharmacol. 31: 3335–3346.

    Google Scholar 

  • Trush, M.A., Seed, J.L. and Kensler, T.W. (1985) Oxidant-dependent metabolic activation of polycyclic aromatic hydrocarbons by phorbol ester-stimulated human polymophornuclear leukocytes: Possible link between inflammation and cancer. Proc. Natl. Acad. Sci. USA 82: 5194–5198.

    Article  PubMed  CAS  Google Scholar 

  • Trush, M.A., Twerdok, L.E. and Esterline, R.L. (1990) Comparison of oxidant activities and the activation of benzo(a)pyrene-7,8-dihydrodiol by polymorphonuclear leukocytes from human, rat and mouse. Xenobiotica 20: 925–932.

    Article  PubMed  CAS  Google Scholar 

  • Twerdok, L.E. and Trush, M.A. (1988) Neutrophil-derived oxidants as mediators of chemical activation in bone marrow. Chem. -Biol. Interact. 65: 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Twerdok, L.E., Mosebrook, D.R. and Trush, M.A. (1992) Comparison of oxidant-generation and BP-diol activation by bone marrow cells from C57BL/6 and DBA/2 mice: Implications for risk of bone marrow toxicity induced by polycyclic hydrocarbons. Toxicol. Appl. Pharmacol. 112: 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Verhagen, H., Schilderman, P.A.E.L. and Kleinjans, J.C.S. (1991) Butylated hydroxyanisole in perspective. Chem. Biol. Interact. 80: 109–134.

    Article  PubMed  CAS  Google Scholar 

  • Wacker, W.E.C. and Vallee, B.L. (1959) Nucleic acids and metals. J. Biol. Chem. 234: 3257–3262.

    CAS  Google Scholar 

  • Weiss, S.J., Klein, R., Slivka, R. and Wei, M. (1982) Chlorination of taurine by human neutrophils. J. Clin. Invest. 70: 598–607.

    Article  PubMed  CAS  Google Scholar 

  • Weitberg, A., Weitzman, S., Destrempes, M., Latt, S. and Stossel, T. (1983) Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells. New England J. Med. 308: 26–29.

    Article  CAS  Google Scholar 

  • Weitzman, S.A. and Gordon, L.I. (1990) Inflammation and cancer: Role of phagocyte-generated oxidants in carcinogenesis. Blood 76: 655–663.

    PubMed  CAS  Google Scholar 

  • Weitzman, S.A., Weitberg, A.B., Clark, E.P. and Stossel, T.P. (1985) Phagocytes as carcinogens: Malignant transformation produced by human neutrophile. Science 227: 1231–1233.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, S.A. and Stossel, T.P. (1981) Mutation caused by human phagocytes. Science 212: 546–547.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, S.A., Lee, R.M. and Ovellette, A.J. (1989) Alteration in c-abl gene methylation in cells transformed by phagocyte-generated oxidants. Biochem. Biophys. Res. Commun. 158: 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K. and Kawanishi, S. (1989) Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide. J. Biol. Chem. 264: 15435–15440.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K. and Kawanishi, S. (1991) Site-specific DNA damage induced by hydrazine in the presence of manganese and copper ions: The role of hydroxyl radical and hydrogen atom. J. Biol. Chem. 266: 1509–1515.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K. and Kawanishi, S. (1992) Site-specific DNA damage by phenylhydrazine and phenelzine in the presence of Cu(II) ion or Fe(III) complexes: Roles of active oxygen species and carbon radicals. Chem. Res. Toxicol. 5, 440–446.

    Article  PubMed  CAS  Google Scholar 

  • Yim, M.B., Chock, P.B. and Stadtman, E.R. (1990) Copper,zinc superoxide dismutase catalyzed hydroxyl radical production from hydrogen peroxide. Proc. Natl. Acad. Sci. USA 87: 5006–5010.

    Article  PubMed  CAS  Google Scholar 

  • Yim, M.B., Chock, P.B. and Stadtman, E.R. (1992) Enzyme function of copper,zinc superoxide dismutase as a free radical generator. J. Biol. Chem. 268: 4099–4105.

    Google Scholar 

  • Yourtee, D.M., Elkins, L.L., Nalvarte, E.L. and Smith, R.E. (1992) Amplification of doxorubicin mutagenicity by cupric ion. Toxicol. Appl. Pharmacol. 116: 57–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Li, Y., Trush, M.A. (1995). Oxidative stress and its relationship to carcinogen activation. In: Cutler, R.G., Packer, L., Bertram, J., Mori, A. (eds) Oxidative Stress and Aging. Molecular and Cell Biology Updates. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7337-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7337-6_21

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7339-0

  • Online ISBN: 978-3-0348-7337-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics