Skip to main content

DNA Fingerprinting of the Human Intestinal Parasite Giardia intestinalis with Hypervariable Minisatellite Sequences

  • Chapter
DNA Fingerprinting: Approaches and Applications

Part of the book series: Experientia Supplementum ((EXS,volume 58))

Summary

Individual isolates of the Giardia duodenalis group of protozoan intestinal parasites were identified by DNA fingerprinting with hypervariable minisatellite sequences. A morphologically identical parasite is found in some forty different animal species. Although the species name intestinalis is reserved for the human isolates, electrophoretic karyotyping suggests that most duodenalis isolates fall into the same species grouping. Distinction based upon morphology, restriction endonuclease cleavage of genomic DNA or isoenzyme analysis has not been adequate to identify individual strains. The successful use of hypervariable sequences in the identification of individual human genomes encouraged us to examine the use of these same sequences for the possible identification of parasite isolates. We initially used as a fingerprinting probe the genome of the bacteriophage M13, which has repeated sequences recognising homologous hypervariable sequences in the human genome. The M13 probe recognises a weakly homologous set of hypervariable sequences in Giardia. The number of informative bands is comparable to those seen in mammals, since the lower molecular weight bands are also useful. There is considerable divergence in the sequences of individual Giardia minisatellìtes. Some cloned Giardia hypervariable sequences are more homologous to M13 than they are to each other. Similar results were observed with the hypervariable repeat sequences 3′ to the human α-globin gene when they were used as a probe to distinguish Giardia isolates. The poly(dA-dC).poly(dG-dT) probe which recognises frequent TG tracts in a number of organisms also detects a few variable bands amidst a hybridisation background in the Giardia genome. Thus Giardia isolates which could not be distinguished by restriction endonuclease cleavage, antibody typing or isoenzyme analysis have been identified by DNA fingerprinting procedures. Detailed analysis of strain movement, resurgence, variation, host range and drug resistance is now possible. Similar families of sequences may be widespread in lower eukaryotes and useful for generating individual specific fingerprints. A procedure for detecting individual parasites is also presented. Since Giardia is regarded as the most ancient eukaryote before the occurrence of symbiosis with purple non-sulphur bacteria to generate mitochondria, the identification of hypervariable sequences in the Giardia genome should also aid in understanding the mechanism of generation and evolution of these sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, R. D., Nash, T. E., and Wellems, T. E. (1988) The Giardia lamblia trophozite contains sets of closely related chromosomes. Nucl. Acids Res. 16: 4555–4567.

    Article  Google Scholar 

  • Andrews, B. J., Mentzoni, L., and Bjorvatn, B. (1990) Zymodeme conversion of isolates of Entamoeba histolytica. Trans. R. Soc. Trop. Med. Hyg. 84: 63–65.

    Article  Google Scholar 

  • Andrews, R. H., Adams, M., Boreham, P. F. L., Mayrhofer, G., and Meloni, B. P. (1989) Giardia intestinalis: electrophoretic evidence for a species complex. Im. J. Parasitol. 19: 183–190.

    Article  Google Scholar 

  • Archibald, S. C., Mitchell, R. W., Uperoft, J. A., Boreham, P. F.L., and Uperoft, P. (1991) Variation between human and animal isolates of Giardia as demonstrated by DNA fingerprinting. Int. J. Parasitol. 21: 123–124.

    Article  Google Scholar 

  • Armour, J. A. L., Wong, Z., Wilson, V., Royle, N. J., and Jeffreys, A. J. (1989) Sequences flanking the repeat arrays of human minisatellites: association wiht tandem and dispersed repeat elements. Nucl. Acids Res. 17: 4925–4934.

    Article  Google Scholar 

  • Baker, R. J. and Bickham, J. W. (1980) Karyotypic evolution in bats: Evidence of extensive and conservative chromosomal evolution in closely related taxa. Syst. Zool. 29: 239–253.

    Article  Google Scholar 

  • Bell, G. I., Selby, M. J., and Rutter, W. J. (1982) The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35.

    Article  Google Scholar 

  • Bellamy, R., Inglehearn, C., Lester, D., Hardcastle, A., and Bhattacharya, S. (1990) Better fingerprinting with PCR. Trends Genet. 6: 32.

    Article  Google Scholar 

  • Bishop, R. P., and Akinsehinwa, F. (1990) Characterization of Leishmania donovani stocks by genomic DNA heterogeneity and molecular karyotype. Trans. R. Soc. Trop. Med. Hyg. 83: 629–634.

    Article  Google Scholar 

  • Boreham, P. F. L., Uperoft, J. A., and Uperoft, P. (1990) Changing approaches to the study of Giardia epidemiology: 1681–2000. Int. J. Parasitol. 20: 479–487.

    Article  Google Scholar 

  • Borst, P., and Greaves, D. R. (1987) Programmed gene rearrangements altering gene expression. Science 235: 658–667.

    Article  Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am..1. Hum. Genet. 32: 314–331.

    Google Scholar 

  • Bulletin WHO (1987) Public health significance of intestinal parasitic infections. 65: 575–588.

    Google Scholar 

  • Cavalier-Smith, T. (1987) The origin of eukaryote and archaebacterial cells. In: Endocytobiology III, Annal. New York Acad. Sci. 503: 17–54.

    Google Scholar 

  • Cavalier-Smith, T. (1989) Archaebacteria and archezoa. Nature 339: 100–101.

    Article  Google Scholar 

  • Capon, A. G., Uperoft, J. A., Boreham, P. F. L., Cottis, L. E. and Bundesen, P. G. (1989) Similarities of Giardia antigens derived from human and animal sources. Int. J. Parasitol. 19: 91–98.

    Google Scholar 

  • Capon, A. G., Uperoft, J. A., Boreham, P. F. L., Cottis, L. E. and Bundesen, P. G. (1989) Similarities of Giardia antigens derived from human and animal sources. Int. J. Parasitol. 19: 91–98.

    Google Scholar 

  • Cedillo-Rivera, R., Enciso-Moreno, J. A., Martinez-Palomo, A., and Ortega-Pierres, G. (1989) Giardia lamblia: isoenzyme analysis of 19 axenic strains isolated from symptomatic and asymptomatic patients in Mexico. Trans. R. Soc. Trop. Med. Hyg. 83: 644–646.

    Article  Google Scholar 

  • Conover, R. K. and Brunk, C. F. (1986) Macronuclear DNA molecules of Tetrahymena thermophila. Mol. Cell Biol. 6: 900–905.

    Google Scholar 

  • DeJonckheere, J. F., Majewska, A. C., and Kasprzak, W. (1990) Giardia isolates from primates and rodents display the same molecular polymorphism as human isolates. Mol. Biochem. Parasitol. 39: 23–29.

    Article  Google Scholar 

  • Dover, G. A. (1987) DNA turnover and the molecular clock. J. Mol. Evol. 26: 47–58.

    Article  Google Scholar 

  • Dover, G. A. (1989) Victims or perpetrators of DNA turnover? Nature 342: 347–348.

    Article  Google Scholar 

  • Ellis, J., and Crampton, J. (1989) A simple, highly repetitive sequence in the Leishmania genome. In: Hart, D. T. (ed.) Leishmaniasis. The Current Status and New Strategies for Control, Plenum Press, New York, pp. 589–596.

    Google Scholar 

  • Fenton, B., Walker, A., and Walliker, D. (1985) Protein variation in clones of Plasmodium falciparum detected by two dimensional electrophoresis. Mol. Biochem. Parasitol. 16: 173–183.

    Article  Google Scholar 

  • Fowler, S. J., Gill, P., Werret, D. J., and Higgs, D. R. (1988) Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3’HVR. Hum. Genet. 79: 142–146.

    Article  Google Scholar 

  • Ghosal, D., and Saedler, H. (1978) DNA sequence of the mini-insertion IS2–6 and its relation to the sequence of IS2. Nature 275: 611–617.

    Article  Google Scholar 

  • Giannini, S. H., Schittini, M., Keithly, J. S., Warburton, P. W., Cantor, C. R., and Van der Ploeg, L. H. T. (1986) Karyotype analysis of Leishmania species and its use in classification and clinical diagnosis. Science 232: 762–765.

    Article  Google Scholar 

  • Giannini, S. H., Curry, S. S., Tesh, R. B., and Van der Ploeg, L. H. T. (1990) Size-conserved chromosomes and stability of molecular karyotype in cloned stocks of Leishmania major. Mol. Biochem. Parasitol. 39: 9–22.

    Article  Google Scholar 

  • Gibson, W. C., and Borst, P. (1986) Size-fractionation of the small chromosomes of Trypanozoon and Nannomonas trypanosomes by pulsed field gradient gel electrophoresis. Malec. Biochem. Parasitol. 18: 127–140.

    Article  Google Scholar 

  • Goodbourn, S. E. Y., Higgs, D. R., Clegg, J. B., and Weatherall, D. J. (1983) Molecular basis of length polymorphism in the human zeta-globin gene complex. Proc. Natl. Acad. Sci. USA 80: 5022–5026.

    Article  Google Scholar 

  • Hamada, H., and Kakunaga, T. (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298: 396–398.

    Article  Google Scholar 

  • Hamada, H., Petrino, M. G., and Kakunaga, T. (1982) A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465–6469.

    Article  Google Scholar 

  • Hancock, J. M., and Dover, G. A. (1988) Molecular coevolution among cryptically simple expansion segments of eukaryotic 26/28S rRNAs. Mol. Biol. Evol. 5: 377–391.

    Google Scholar 

  • Hancock, J. M., Tautz, D., and Dover, G. A. (1988) Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Mol. Biol. Evol. 5: 393–414.

    Google Scholar 

  • Healey, A., Mitchell, R., Uperoft, J. A., Boreham, P. F. L., and Uperoft, P. (1990) Complete nucleotide sequence of the ribosomal RNA tandem repeat unit from Giardia intestinalis. Nucl. Acids Res. 18: 4006.

    Article  Google Scholar 

  • Higgs, D. R., Goodbourn, S. E. Y., Wainscoat, J. S., Clegg, J. B., and Weatherall, D. J. (1981) Highly variable regions of DNA flank the human a globin genes. Nucl. Acids Res 9: 4213–4224.

    Article  Google Scholar 

  • Holmquist, R., Miyamoto, M. M., and Goodman, M. (1988) Higher primate phylogeny–Why can’t we decide? Mol. Biol. Evol. 5: 201–216.

    Google Scholar 

  • Horn, G. T., Richards, B., and Klinger, K. W. (1989) Amplification of a highly polymorphic VNTR segment by the polymerase chain reaction. Nucl. Acids Res. 17: 2140.

    Article  Google Scholar 

  • Jarman, A. P., Nicholls, R. D., Weatherall, D. J., Clegg, J. B., and Higgs, D. R. (1986) Molecular characterisation of a hypervariable region downstream of the human a-globin gene cluster. EMBO J 5: 1857–1863.

    Google Scholar 

  • Jeffreys, A. J. (1987) Highly variable minisatellites and DNA fingerprints. Biochem. Soc. Trans. 15: 309–317.

    Google Scholar 

  • Jeffreys, A. J., Neumann, R., and Wilson, V. (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60: 473–485.

    Article  Google Scholar 

  • Jeffreys, A. J., Royle, N. J., Wilson, V., and Wong, Z. (1988a) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., Neumann, R., and Keyte, J. (1988b) Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucl. Acids Res. 16: 10953–10971.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985a) Hypervariable `minisatellite’ regions in human DNA. Nature 314: 67–73.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985b) Individual-specific `fingerprints’ of human DNA. Nature 316: 76–79.

    Article  Google Scholar 

  • Kashi, Y., Tikochinsky, Y., Genislav, E., Iraqi, F., Nave, A., Beckman, J. S., Gruenbaum, Y., and Soller, M. (1990) Large restriction fragments containing poly-TG are highly polymorphic in a variety of vertebrates. Nucl. Acids Res. 18: 1129–1132.

    Article  Google Scholar 

  • Kemp, D. J., Thompson, J. K., Walliker, D., and Corcoran, L. M. (1987) Molecular karyotype of Plasmodium falciparum: conserved linkage groups and expendable histidine-rich protein genes. Proc. Natl. Acad. Sci. USA 84: 7672–7676.

    Article  Google Scholar 

  • Kornberg, A. (1980) DNA Replication. W. H. Freeman, San Francisco, pp. 143–150.

    Google Scholar 

  • Kulda, J., and Nohynkova, E. (1978) Flagellates of the human intestine and the intestines of other species. In: Krier, J. P. (ed.), Parasitic Protozoa, vol. 2, Academic Press, New York, pp. I - 138.

    Google Scholar 

  • Kurnit, D. M. (1989) Escherichia coli recA deletion strains that are highly competent for transformation and for in vivo phage packaging. Gene 82: 313–315.

    Article  Google Scholar 

  • Lamont, G. S., Tucker, R. S., and Cross, G. A. M. (1986) Analysis of antigen switching rates in Trypanosoma brucei. Parasitai. 92: 355–367.

    Google Scholar 

  • Mirelman, D. (1987) Effect of culture conditions and bacterial associates on the zymodemes of Entamoeba histolytica. Parasitol. Today 3: 40–43.

    Google Scholar 

  • Mirelman, D., Bracha, R. Chayen, A., Aust-Kettis, A., and Diamond, L. S. (1986a) Entamoeba histolytica: Effect of growth conditions and bacterial associates on isoenzyme patterns and virulence. Exp. Parasitol. 62: 142–148.

    Article  Google Scholar 

  • Mirelman, D., Bracha, R., Wexler, A., and Chayen, A. (1986b) Changes in isoenzyme patterns of a cloned culture of nonpathogenic Entamoeba histolytica during axenization. Infect. Immum. 54: 827–832.

    Google Scholar 

  • Nakamura, Y., Julier, C., Wolff, R., Holm, T., O’ Connell, P., Leppert, M., and White, R. (1987a) Characterization of a human `midisatellite’ sequence. Nucl. Acids Res. 15: 2537–2547.

    Article  Google Scholar 

  • Nakamura, Y., Leppert, M., O’Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E., and White, R. (1987b) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622.

    Article  Google Scholar 

  • Rogstad, S. H., Herwaldt, B. L., Schlesinger, P. H., and Krogstad, D. J. (1989) The M13 repeat probe detects RFLPs between two strains of the protozoan malaria parasite Plasmodium falciparum. Nucl. Acids Res. 17: 3610.

    Article  Google Scholar 

  • Ruffié, J. (1987) The Population Alternative. Penguin Books, Middlesex.

    Google Scholar 

  • Ryskov, A. P., Jincharadze, A. G., Prosnyak, M. I., Ivanov, P. L., and Limborska, S. A. (1988) M13 phage DNA as a universal marker for DNA fingerprinting of animals, plants and microorganisms. FEBS Lett. 233: 388–392.

    Article  Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  Google Scholar 

  • Sargeaunt, P. G. (1987) The reliability of Entamoeba histolytica zymodemes in clinical diagnosis. Parasitol. Today 3: 37–40.

    Google Scholar 

  • Sargeaunt, P. G., Jackson, T. F. H. G., Wiffen, S. R., and Bhojnani, R. (1988) Biological evidence of genetic exchange in Entamoeba histolytica. Trans. R. Soc. Trop. Med. Hyg. 82: 862–867.

    Article  Google Scholar 

  • Schäfer, R., Zischler, H., and Epplen, J. T. (1988) (CAC)5, a very informative oligonucleotide probe for DNA fingerprinting. Nucl. Acids Res. 16: 5196.

    Google Scholar 

  • Schwartz, D. C., and Cantor, C. R. (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37: 65–75.

    Article  Google Scholar 

  • Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A., and Peattie, D. A. (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243: 75–77.

    Google Scholar 

  • Spithill, T. W., and Samaras, N. (1987) Genomic organisation, chromosomal location and transcription of dispersed and repeated tubulin genes in Leishmania major. Molec. Biochem. Parasitol. 24: 23–37.

    Article  Google Scholar 

  • Tautz, D., and Renz, M. (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acids Res. 12: 4127–4138.

    Article  Google Scholar 

  • Tautz, D., Trick, M., and Dover, G. A. (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652–656.

    Article  Google Scholar 

  • Tibayrenc, M., Kjellberg, F., and Ayala, F. J. (1990) A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87: 2414–2418.

    Article  Google Scholar 

  • Uperoft, J. A., Boreham, P. F. L., and, Uperoft, P. (1989a) Geographic variation in Giardia karyotypes. Int. J. Parasitol. 19: 519–527.

    Article  Google Scholar 

  • Uperoft, J. A., Dunn, L. A., Dommett, L. S., Healey, A., Uperoft, P., and Boreham, P. F. L. (1989b) Chromosomes of Blastocystis hominis. Int. J. Parasitol. 19: 879–883.

    Article  Google Scholar 

  • Uperoft, J. A., Healey, A., Mitchell, R., Boreham, P. F. L., and Uperoft, P. (1990a) Antigen expression from the ribosomal repeat of Giardia intestinalis. Nucl. Acids Res. 18: 7077–7081.

    Article  Google Scholar 

  • Uperoft, P., Boreham, P. F. L., and Uperoft, J. A. (1988) The genome of Giardia intestinales. In: Advances in Giardia Research, Wallis, P. M. and Hammond, B. R. (eds.), University of Calgary Press, Calgary, pp. 147–152.

    Google Scholar 

  • Uperoft, P., Mitchell, R., and Boreham, P. F. L. (1990b) DNA fingerprinting of the intestinal parasite Giardia duodenalis with the M13 phage genome. Mt. J. Parasitol. 20: 319–323.

    Google Scholar 

  • Uperoft, P., Uperoft, J. A., and Boreham, P. F. L. (1989c) Genetic variation in Giardia intestinalis in comparison with other unicellular organisms. In: Ko, R. C. (ed.), Immumonogical and Molecular Basis of Pathogenesis in Parasitic Diseases, University of Hong Kong, Hong Kong, pp. 155–168.

    Google Scholar 

  • Van der Ploeg, L. H. T., Smits, M., Ponnadurai, T., Vermeulen, A., Meuwissen, J. H. E. Th., and Langsley, G. (1985) Chromosome-sized DNA molecules of Plasmodium falciparum. Science 229: 658–661.

    Google Scholar 

  • Vassart, G., Georges, M., Monsieur, R., Brocas, H., Lequarre, A. S., and Cristophe, D. (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684.

    Article  Google Scholar 

  • Vollrath, D., Davis, R. W., Connelly, C., and Hieter, P. (1988) Physical mapping of large DNA by chromosome fragmentation. Proc. Natl. Acad. Sci. USA 85: 6027–6031.

    Article  Google Scholar 

  • Waters, A. P., and McCutchan, T. F. (1989) Rapid, sensitive diagnosis of malaria based on ribosomal RNA. Lancet i: 1343–1346.

    Article  Google Scholar 

  • Wyman, A. R., and White, R. (1980) A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. USA 77: 6754–6758.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Upcroft, P. (1991). DNA Fingerprinting of the Human Intestinal Parasite Giardia intestinalis with Hypervariable Minisatellite Sequences. In: Burke, T., Dolf, G., Jeffreys, A.J., Wolff, R. (eds) DNA Fingerprinting: Approaches and Applications. Experientia Supplementum, vol 58. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7312-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7312-3_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7314-7

  • Online ISBN: 978-3-0348-7312-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics