Skip to main content

Oligonucleotide Fingerprinting in Plants and Fungi

  • Chapter
DNA Fingerprinting: Approaches and Applications

Part of the book series: Experientia Supplementum ((EXS,volume 58))

Summary

Synthetic oligonucleotides complementary to simple repetitive DNA sequence motifs are now routinely applied for multilocus DNA fingerprinting of humans and a large variety of animal species. Most recently, these probes have also been used successfully for the analysis of plant and fungal genomes. All simple motifs investigated to date (CA-, CT-, GATA-, GACA-, GAA-, GTG - GGAT- and TCC-multimers) are present and repeated to various extents throughout the plant and fungal kingdoms. Usually, these probes reveal intra- and interspecific genetic variability resulting in polymorphic or even hypervariable banding patterns. Depending on the combination of species and oligonucleotide probe, species- variety-, accession-, strain-or individual-specific “fingerprints” were obtained in plants and fungi. Somatic stability was observed. For their successful application to DNA fingerprinting, the optimal probe/species-combinations that give distinct banding patterns have to be developed empirically. Various applications of plant DNA fingerprinting using oligonucleotide probes are suggested: (1) characterization of the extent of genetic variability within races, (2) assessment of the “purity” of inbred lines, (3) selection of the recurrent parental genome in backcross breeding programs, (4) identification of crop cultivars and fungal strains, (5) characterization of fusion hybrids, (6) evaluation of the extent of somaclonal variation at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, S., Müller, C. R., and Epplen, J. T. (1986) DNA fingerprinting by oligonucleotide probes specific for simple repeats. Hum. Genet. 74: 239–243.

    Article  Google Scholar 

  • Ali, S., Müller, C. R., and Epplen, J. T. (1986) DNA fingerprinting by oligonucleotide probes specific for simple repeats. Hum. Genet. 74: 239–243.

    Article  Google Scholar 

  • Braithwaite, K. S., and Manners, J. M. (1989) Human hypervariable minisatellite probes detect DNA polymorphisms in the fungus Colletotrichum gloeosporioides. Curr. Genet. 16: 473–475.

    Article  Google Scholar 

  • Brown, P. T. H., Kyozuka, J., Sukekiyo, Y., Shimamoto, K., and Lörz, H. (1990) Molecular changes in protoplast-derived rice plants. Mol. Gen. Genet. 223: 324–328.

    Article  Google Scholar 

  • Burke, T., and Bruford, M. W. (1987) DNA fingerprinting in birds. Nature 327: 149–152.

    Article  Google Scholar 

  • Dallas, J. F. (1988) Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe. Proc. Natl. Acad. Sci. USA 85: 6831–6835.

    Article  Google Scholar 

  • Dally, A. M., and Second, G. (1990) Chloroplast DNA diversity in wild and cultivated species of rice (genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis. Theor. Appl. Genet. 80: 209–222.

    Article  Google Scholar 

  • Davey, M. R., Rech, E. L., and Mulligan, B. J. (1989) Direct DNA transfer to plant cells. Plant Mol. Biol. 13: 273–285.

    Article  Google Scholar 

  • Debener, T., Salamini, F., and Gebhardt, C. (1990) Phylogeny of wild and cultivated Solanum species based on nuclear restriction fragment length polymorphisms (RFLPs). Theor. Appl. Genet. 79: 360–368.

    Article  Google Scholar 

  • Epplen, J. T. (1988) On simple repeated GATA/GACA sequences in animal genomes: a critical reappraisal. J. Hered. 79: 409–417.

    Google Scholar 

  • Epplen, J. T., Ammer, H., Epplen, C., et al. (1991) Oligomideotide fingerprinting using simple repeat motifs: a convenient, ubiquitously applicable method to detect hypervariability for multiple purposes. In: Burke, T. Dolf, G., Jeffreys, A. J. and Wolff R. (eds) DNA Fingerprinting: Approaches and Applications. Birkhäuser, Basel pp 50–69 (This volume).

    Google Scholar 

  • Flavell, R. (1986) Repetitive DNA and chromosome evolution in plants. Phil. Trans. Roy. Soc. London, series B 312: 227–242.

    Article  Google Scholar 

  • Gebhardt, C., Blomendahl, C., Schachtschabel, U., Debener, T., Salamini, F., and Ritter, E. (1989) Identification of 2n breeding lines and 4n varieties of potato (Solanum tuberosum ssp. tuberosum) with RFLP fingerprints. Theor. Appl. Genet. 78: 16–22.

    Article  Google Scholar 

  • Georges, M., Lequarré, A.-S., Castelli, M., Hanset, R., and Vassart, G. (1988) DNA fingerprinting in domestic animals using four different minisatellite probes. Cytogenet. Cell Genet. 47: 127–131.

    Article  Google Scholar 

  • Greaves, D. R., and Patient, R. K. (1985) (AT)„ is an interspersed repeat in the Xenopus genome. EMBO J. 4: 2617–2626.

    Google Scholar 

  • Gross, D. S., Huang, S.-Y., and Garrard, W. (1985) Chromatin structure of the potential Z-forming sequence (dT-dG)„ (dC-dA)n. J. Mol. Biol. 183: 251–265.

    Article  Google Scholar 

  • Hamada, H., and Kakunaga, T. (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298: 396–398.

    Article  Google Scholar 

  • Hamada, H., Petrino, M. G., and Kakunaga, T. (1982) A novel repeated element with Z-DNA-forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465–6469.

    Article  Google Scholar 

  • Hamada, H., Petrino, M. G., Kakunaga, T., Seidman, M., and Stollar, B. D. (1984a) Characterization of genomic poly (dT-dG) poly (dC-dA) sequences: structure, organization, and conformation. Mol. Cell. Biol. 4: 2610–2621.

    Google Scholar 

  • Hamada, H., Seidman, M., Howard, B. H., and Gorman, C. M. (1984b) Enhanced gene expression by the poly(dT-dG) poly(dC-dA) sequence. Mol. Cell. Biol. 4: 2622–2630.

    Google Scholar 

  • Harms, C. T. (1983) Somatic hybridization by plant protoplast fusion. In: Potrykus, I., Harms, C. T., King, P. J., and Shillito, R. D. (eds.) Protoplasts 1983: Lecture proceedings. Birkhäuser, Basel, pp. 69–84.

    Google Scholar 

  • Hentschel, C. C. (1982) Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to 51 nuclease. Nature 295: 714–716.

    Article  Google Scholar 

  • Hillel, J., Schaap, T., Haberfeld, A., Jeffreys, A. J., Plotzky, Y., Cahaner, A., and Lavi, U. (1990) DNA fingerprints applied to gene introgression in breeding programs. Genetics 124: 783–789.

    Google Scholar 

  • Hosaka, K., Ogihara, Y., Matsubayashi, M., Tsunewaki, K. (1988) Phylogenetic relationship between the tuberous Solanum species as revealed by restriction endonuclease analysis of chloroplast DNA. Jpn J. Genet. 59: 349–369.

    Article  Google Scholar 

  • Htun, H., and Dahlberg, J. E. (1989) Topology and formation of triple-stranded H-DNA. Science 243: 1571–1579.

    Article  Google Scholar 

  • Huey, B., and Hall, J. (1989) Hypervariable DNA fingerprinting in Escherichia coli: Minisatellite probe from bacteriophage M13. J. Bacteriol. 171: 2428–2532.

    Google Scholar 

  • Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985a). Individual-specific “fingerprints” of human DNA. Nature 316: 76–79.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., and Thein, S. L. (I985b). Hypervariable “minisatellite” regions in human DNA. Nature 314: 67–73.

    Google Scholar 

  • Jeffreys, A. J., and Morton, D. B. (1987) DNA fingerprints of dogs and cats. Anim. Genet. 18: 1–5.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., Neumann, R., and Keyte, J. (1988) Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res. 16: 10953–10971.

    Article  Google Scholar 

  • Jeffreys, A. J., Neumann, R., and Wilson, V. (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60: 473–485.

    Article  Google Scholar 

  • Kuhnlein, U., Zadworny, D., Dawe, Y., Fairfull, R. W., and Gavora, J. S. (1990) Assessment of inbreeding by DNA fingerprinting: development of a calibration curve using defined strains of chickens. Genetics 125: 161–165.

    Google Scholar 

  • Lee, M., and Phillips, R. L. (1988) The chromosomal basis of somaclonal variation. Ann. Rev. Plant Physiol. 39: 413–437.

    Article  Google Scholar 

  • Levinson, G., Marsh, L., Epplen, J. T., and Gutman, G. A. (1985) Cross-hybridizing snake satellite, Drosophila, and mouse DNA sequences may have arisen independently. Mol. Biol. Evol. 2: 494–504.

    Google Scholar 

  • Levinson, G., and Gutman, G. A. (1987) Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203–221.

    Google Scholar 

  • Lynch, M. (1988) Estimation of relatedness by DNA fingerprinting. Mol. Biol. Evol. 5: 584–599.

    Google Scholar 

  • Margot, J. B., and Hardison, R. C. (1985) DNase I and nuclease Si sensitivity of the rabbit alpha globin gene in nuclei and in supercoiled plasmids. J. Mol. Biol. 184: 195–210.

    Article  Google Scholar 

  • Martienssen, R. A., and Baulcombe, D. C. (1989) An unusual wheat insertion sequence (WIS1) lies upstream of an alpha-amylase gene in hexaploid wheat, and carries a “mini-satellite” array. Mol. Gen. Genet. 217: 401–410.

    Article  Google Scholar 

  • Martienssen, R. A., and Baulcombe, D. C. (1989) An unusual wheat insertion sequence (WIS1) lies upstream of an alpha-amylase gene in hexaploid wheat, and carries a “mini-satellite” array. Mol. Gen. Genet. 217: 401–410.

    Article  Google Scholar 

  • Miklos, G. L. G., Matthaei, K. I., and Reed, K. C. (1989) Occurrence of the (GATA)„ sequences in vertebrate and invertebrate genomes. Chromosoma 98: 194–200.

    Article  Google Scholar 

  • Monastyrskii, O. A., Ruban, D. N., Tokarskaya, O. N., and Ryskov, A. P. (1990) DNA fingerprints of some Fusarium isolates differentiated toxicogenically. Genetika 26: 374–377.

    Google Scholar 

  • Nagamine, T., Todd, G. A., McCann, K. P., Newbury, H. J., and Ford-Lloyd, B. V. (1989) Use of restriction fragment length polymorphism to fingerprint beets at the genotype and species level. Theor. Appl. Genet. 78: 847–851.

    Article  Google Scholar 

  • Nordheim, A., and Rich, A. (1983) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303: 674–670.

    Article  Google Scholar 

  • Nybom, H., Schaal, B. H., and Rogstad, S. H. (1989) DNA “fingerprints” can distinguish between cultivars of blackberries and raspberries. Acta Hort. 262: 305–310.

    Google Scholar 

  • Nybom, H., and Schaal, B.H. (1990a) DNA “fingerprints” applied to paternity analysis in apples (Malus x domestica). Theor. Appl. Genet. 79: 763–768.

    Google Scholar 

  • Nybom, H., and Schaal, B. H. (1990b) DNA “fingerprints” reveal genotypic distributions in natural populations of blackberries and raspberries (Rubus, Rosaceae). Amer. J. Bot. 77: 883–888.

    Article  Google Scholar 

  • Nybom, H., Rogstad, S. H., and Schaal, B. A. (1990) Genetic variation detected by use of the M13 “DNA fingerprint” probe in Malus, Prunus, and Rubus (Rosaceae). Theor. Appl. Genet. 79: 153–156.

    Google Scholar 

  • Nybom, H. (1991) Applications of DNA fingerprinting in plant breeding. In: Burke, T., Dolf, G., Jeffreys, A. J., and Wolff, R. (eds) Nybom, H pp 294–311. ( This volume).

    Google Scholar 

  • Orgel, L. E., and Crick, F. H. C. (1980) Selfish DNA: The ultimate parasite. Nature 284: 604–607.

    Article  Google Scholar 

  • Rich, A., Nordheim, A., and Wang, A. H. (1984) The chemistry and biology of left-handed Z-DNA. Ann. Rev. Biochem. 53: 791–846.

    Article  Google Scholar 

  • Richards, E. J., and Ausubel, F. M. (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136.

    Google Scholar 

  • Rogers, J. (1983) CACA sequences -the ends and the means? Nature 305: 101–102.

    Article  Google Scholar 

  • Rogstad, S. H., Patton, J. C., and Schaal, B. A. (1988a) M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proc. Natl. Acad. Sci. USA 85: 9176–9178.

    Article  Google Scholar 

  • Rogstad, S. H., Patton, J. C., and Schaal, B. A. (1988b) A human minisatellite probe reveals RFLPs among individuals of two angiosperms. Nucleic Acids Res. 16: 1 1378.

    Google Scholar 

  • Ryskov, A. P., Jincharadze, A. G., Prosnyak, M. I., Ivanov, P. L., and Limborska, S. A. (1988) M13 phage DNA as a universal marker for DNA fingerprinting of animals, plants, and microorganisms. FEBS Letters 233: 388–392.

    Article  Google Scholar 

  • Schäfer, R., Zischler, H., Birsner, U., Becker, A., and Epplen, J. T. (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9: 369–374.

    Article  Google Scholar 

  • Song, K., Osborn, T. C., and Williams, P. H. (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor. Appl. Genet. 79: 497–506.

    Article  Google Scholar 

  • Tanksley, S. D., Young, N. D., Paterson, A. H., and Bonierbale, M. W. (1989) RFLP mapping in plant breeding: new tools for an old science. Bitl Technology 7: 257–264.

    Google Scholar 

  • Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17: 6463–6471.

    Article  Google Scholar 

  • Tautz, D., and Renz, M. (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127–4138.

    Article  Google Scholar 

  • Tautz, D., Trick, M., and Dover, G. A. (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652–656.

    Article  Google Scholar 

  • Vassart, G., Georges, M., Monsieur, R., Brocas, H., Lequarre, A. S., and Christophe, D. (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684.

    Article  Google Scholar 

  • Vergnaud, G. (1989) Polymers of random short oligonucleotides detect polymorphic loci in the human genome. Nucleic Acids Res. 17: 7623–7630.

    Article  Google Scholar 

  • Walmsley, R. M., Wikinson, B. M., and Kong, T. H. (1989) Genetic fingerprinting for yeasts. Bio/Technology 7: 1168–1170.

    Google Scholar 

  • Weintraub, H. (1983) A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell 32: 1191–1203.

    Article  Google Scholar 

  • Weising, K., Schell, J., and Kahl, G. (1988) Foreign genes in plants: transfer, structure, expression, and applications. Ann. Rev. Genet. 22: 421–477.

    Article  Google Scholar 

  • Weising, K., Weigand, F., Driesel, A., Kahl, G., Zischler, H., and Epplen, J. T. (1989) Polymorphic GATA/GACA repeats in plant genomes. Nucleic Acids Res. 17: 10128.

    Article  Google Scholar 

  • Weising, K., Fiala, B., Ramloch, K., Kahl, G., and Epplen, J. T. (1990) Oligonucleotide fingerprinting in angiosperms. Fingerprint News 2 (2): 5–8.

    Google Scholar 

  • Weising, K., Fiala, B., Ramloch, K., Kahl, G., and Epplen, J. T. (1990) Oligonucleotide fingerprinting in angiosperms. Fingerprint News 2 (2): 5–8.

    Google Scholar 

  • Wong, Z., Wilson, V., Jeffreys, A.J., and Thein, S.L. (1986) Cloning a selected fragment from a human DNA “fingerprint”: isolation of an extremely polymorphic minisatellite. Nucleic Acids Res. 14: 4605–4616.

    Article  Google Scholar 

  • Wyman, A. R., and White, R. (1980) A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. USA 77: 6754–6758.

    Article  Google Scholar 

  • Zakian, V. A. (1989) Structure and function of telomeres. Ann. Rev. Genet. 23: 579–604.

    Article  Google Scholar 

  • Zimmerman, P. A., Lang-Unnasch, N., and Cullis, C. A. (1989) Polymorphic regions in plant genomes detected by an M13 probe. Genome 32: 824–828.

    Article  Google Scholar 

  • Zischler, H., Nanda, I., Schäfer, R., Schmid, M., and Epplen, J. T. (1989) Digoxigenated oligonucleotide probes specific for simple repeats in DNA fingerprinting and hybridization in situ. Hum. Genet. 82: 227–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Weising, K., Ramser, J., Kaemmer, D., Kahl, G., Epplen, J.T. (1991). Oligonucleotide Fingerprinting in Plants and Fungi. In: Burke, T., Dolf, G., Jeffreys, A.J., Wolff, R. (eds) DNA Fingerprinting: Approaches and Applications. Experientia Supplementum, vol 58. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7312-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7312-3_22

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7314-7

  • Online ISBN: 978-3-0348-7312-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics