Skip to main content

On Periodic Hermite-Birkhoff Interpolation by Translation

  • Chapter
Multivariate Approximation Theory IV

Abstract

The equidistant periodic Lagrange interpolation in the space

$$V=span\{{{T}_{{{X}_{j}}}}\left. g \right|0\le j\angle N\}$$

spanned by the translates

$${{T}_{{{x}_{j}}}}g(x):=g(x-{{x}_{j}})$$

of a function g E CZn with the N knots

$${{x}_{j}}:=2\pi j/N,0\le j\angle N$$

as considered in the papers of DELVOS [1], KNAUFF and KRESS [2], LOCHER [3] and PRAGER [4], can be solved with the help of a very easy algorithm: The functions \({{B}_{t}}(x)/{{B}_{t}}(0)\in V\) with \({{B}_{t}}(x):=\sum\limits_{j=0}^{N-1}{{{e}_{t}}}({{x}_{j}}){{T}_{{{X}_{j}}}}g(x)\) ,0 ≤ t < N , Interpolate the exponential functions

$${{e}_{t}}(x):={{e}^{itx}}$$

at the N knots xm = 2πm/N, 0 ≤ m < N. The simple summation

$${{s}_{0}}={{N}^{-1}}\sum\limits_{t=0}^{N-1}{{{B}_{t}}}(x)/{{B}_{t}}(0)\in V$$

of these interpolating functions builds the first fundamental function,

$${{s}_{0}}({{x}_{m}})={{N}^{-1}}\sum\limits_{t=0}^{N-1}{{{e}^{it{{x}_{m}}}}}={{\delta }_{m0}}$$

, 0 ≤ m < N , whose translates

$${{s}_{j}}(x):={{T}_{{{x}_{j}}}}{{s}_{0}}(x):={{s}_{0}}(x-{{x}_{j}})$$

do the rest of the work:

$${{s}_{j}}({{x}_{m}}):={{s}_{0}}({{x}_{m}}-{{x}_{j}})={{\delta }_{j,m}}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.-J. DELVOS, “Periodic Interpolation on Uniform Meshes”, Journal of Approximation Theory, Vol 51, No. 1, September 1987.

    Google Scholar 

  2. W. KNAUFF und R. KRESS, “Optimale Approximation linearer Funktionale auf periodischen Funktionen”, Numer.Math. 22, 187–205 (1974).

    Google Scholar 

  3. F. LOCHER, “Interpolation on Uniform Meshes By the Translates of One Function and Related Attenuation Factors”, Mathematics of Computation, Vol. 37, No. 156, October 1981.

    Google Scholar 

  4. M. PRAGER, “Universally Optimal Approximation of Functionals”, Aplikace Matematiky, 1979, 406–420.

    Google Scholar 

  5. K. v. RADZIEWSKI, “On Periodic Hermite Interpolation by Translation of a Kernel Function and its Derivatives”,Approximation Theory VI, Academic Press, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

von Radziewski, K. (1989). On Periodic Hermite-Birkhoff Interpolation by Translation. In: Multivariate Approximation Theory IV. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 90. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7298-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7298-0_30

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7300-0

  • Online ISBN: 978-3-0348-7298-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics