Skip to main content

Pharmacology of the GABA receptor of insect central neurones in culture: A patch-clamp study

  • Chapter
Comparative Molecular Neurobiology

Part of the book series: EXS ((EXS,volume 63))

Summary

Neuronal primary cultures of Periplaneta americana and Locusta migratoria have been used to study the biophysical and pharmacological properties of the insect GABA receptor using single channel techniques. The insect GABA receptor mediated an increase in chloride conductance, which was blocked by picrotoxin but was insensitive to bicuculline. The vertebrate GABAA agonists isoguvacine, muscimol and ZAPA were potent agonists of the insect GABA receptor but the sulphonic acids 3-amino propane acid and 4-piperizine, which are also agonists of the GABAA receptor, were inactive or only weakly active at the insect GABA receptor.

The gating of the insect GABA receptor was found to involve at least two open and two closed states and the detection of a 35 pS main conductance state and at least three other conductance states associated with the receptor revealed that the insect GABA receptor is of comparable kinetics and conformational complexity to the vertebrate GABAA receptor.

The existence of modulatory sites for benzodiazepines and barbiturates in the insect GABA receptor was confirmed though benzodiazepine-insensitive neurones were also found. Noise and single channel analysis revealed that the mechanism underlying barbiturate enhancement of GABA responses was due to an increase in the mean channel open time.

Pharmacological and single channel studies confirmed that several groups of insecticides interfere with the insect GABA receptor. The mechanism underlying these interactions involves alteration of channel kinetics and reduction of channel conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abalis, I. M., Eldefrawi, M. E. and Eldefrawi, A. T. (1985) High affinity stereospecific binding of cyclodiene insecticides and Y-BHC to GABA receptor of rat brain. Pestic. Biochem. Physiol. 24, 95–102.

    Article  Google Scholar 

  • Allan, R. D., Dickson, H. W., Hiem, B. P., Johnston, G. A. R. and Kazlauskas, R. (1986) Isothiouronium compounds as gamma-aminobutyric acid agonists. Br. J. Pharmacol. 88, 379–387.

    Google Scholar 

  • Barker, J. L., McBurney, R. N. and MacDonald, J. F. (1982) Fluctuation analysis of neutral amino acid responses in cultured mouse spinal neurones. J. Physiol. 322, 365–387.

    Google Scholar 

  • Beadle, D. J. and Lees, G. (1986) Insect neuronal cultures: a new tool in insect neuropharmacology, in: Neuropharmacology and Pesticide Action, pp. 423–444. Eds M. G. Ford, P. N. R. Usherwood, R. C. Reay and G. G. Lunt. Ellis Horwood Books, Chichester.

    Google Scholar 

  • Benson, J. A. (1989) A novel GABA receptor in the heart of the primitive arthropod, Limulus polyphemus. J. exp. Biol. 147, 421–438.

    Google Scholar 

  • Bermudez, I., Hawkins, C. A., Taylor, A. R. and Beadle, D. J. (1991) Actions of insecticides on the insect GABA receptor complex. J. Receptor Res. 11, 221–232.

    Google Scholar 

  • Bormann, J. and Clampham, D. E. (1985) Gamma-aminobutyric acid receptor channels in adrenal chromaffin cells: a patch clamp study. Proc. Natl Acad. Sci. USA 82, 2168–2172.

    Article  Google Scholar 

  • Bormann J., Hamill, O. P. and Sakmann, B. (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutryic acid in mouse cultured spinal neurones. J. Physiol. 385, 243–286.

    Google Scholar 

  • Bowry, N. G. (1983) Classification of GABA receptors, in: The GABA Receptor, pp. 177–213. Ed. S. J. Enna. Humana Press, New Jersey.

    Google Scholar 

  • Casida, J. E. and Lawrence, L. J. (1985) Structure-activity correlations for interactions of bicyclophosphorus esters and some polychlorocycloalkane and pyrethroid insecticides with the brain specific t-butylbicyclophosphorothionate receptor. Env. Health Pers. 61, 123–132.

    Article  Google Scholar 

  • Chalmers, A. E., Miller, T. A. and Olsen, R. W. (1987) Deltamethrin: a neurophysiological study of the sites of action. Pest. Biochem. Physiol. 27, 36–41.

    Article  Google Scholar 

  • Gerschenfeld, H. M. (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol. Rev. 53 (1), 2–119.

    Google Scholar 

  • Hildebrand, J. G. (1988) Summing up and looking ahead–insect neurobiology and the future of pest control, in: Molecular Basis of Drug and Pesticide Action, pp. 583–588. Ed. G. G. Lunt. Elsevier, New York.

    Google Scholar 

  • Holden-Dye, L. and Walker, R. J. (1988) ZAPA, (Z)-3-[(aminoiminomethyl)thio]-2-propanoic acid hydrochloride, a potent agonist at GABA-receptors on the Ascaris muscle cell. Br. J. Pharmacol. 95, 3–5.

    Google Scholar 

  • Lawrence, L. J. and Casida, J. E. (1983) Stereospecific action of pyrethroid insecticides on the Îł-aminobutyric acid receptor-ionophore complex. Science 221, 1399–1401.

    Article  Google Scholar 

  • Lawrence, L. J. and Casida, J. E. (1984) Interactions of lindane, toxaphene and cyclodienes with brain specific t-butylbicyclophosphorothionate receptors. Life Sci. 35, 171–178.

    Article  Google Scholar 

  • Lees, G., Beadle D. J., Neumann, R. and Benson, J. A. (1987) Responses to GABA by isolated insect neuronal soma: pharmacology and modulation by a benzodiazepine and barbiturate. Brain Res. 401, 267–278.

    Article  Google Scholar 

  • Lees, G. and Beadle, D. J. (1986) Dihydroavermectin la: actions on cultured neurones from the insect central nervous system. Brain Res. 366, 369–372.

    Article  Google Scholar 

  • Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Köhler, M., Fujita, N., Rodriguez, H. F., Stevenson, A., Darlison, M. G., Barnard, E. A. and Seeburg, P. H. (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 355, 76–79.

    Article  Google Scholar 

  • Lummis, S. C. R. and Sattelle, D. B. (1986) Binding sites for [3H]GABA, [3H]flunitrazepam and [35]TBPS in insect CNS. Neurochem. Int. 9, 287–293.

    Article  Google Scholar 

  • Lund, A. E. and Narahashi, T. (1981) Interaction of DDT with sodium channels in squid giant axon membranes. Neuroscience 6 (11), 2253–2258.

    Article  Google Scholar 

  • Mathers, D. A. and Baker, J. L. (1982) Chemically induced ion channels in nerve cell membranes. Int. Rev. Neurobiol. 23, 1–33.

    Article  Google Scholar 

  • Mistry, D. K. and Hablitz, J. J. (1990) Activation of sub-conductance states by gamma-aminobutyric acid and its analogs in chick cerebral neurones. Pflugers Arch. 416, 454–461.

    Article  Google Scholar 

  • Neumann, R., Lees, G., Beadle, D. J. and Benson, J. A. (1987) Responses to GABA and other neurotransmitters in insect central neuronal somata in vitro, in: Sites of Action for Neurotoxic Pesticides, pp. 25–43. Am. Chem. Soc., Washington, DC.

    Chapter  Google Scholar 

  • Ogata, N., Vogel, S. M. and Narahashi, T. (1988) Lindane but not deltamethrin blocks a component of GABA-activated chloride channels. FASEB J. 2, 2895–2900.

    Google Scholar 

  • Robinson, T. N., Macallan, D. and Lunt, G. G. (1986) The GABA receptor complex of insect CNS: Characterization of a benzodiazepine binding site. J. Neurochem. 47, 1955–1962.

    Article  Google Scholar 

  • Sewell, R. D. E., Tan, K.-S. and Sheldon, H. R. (1984) Evidence for excitatory and depressant non-receptor mediated membrane effects of benzodiazepines in the crayfish. Neurosci. Lett. 60, 59–63.

    Article  Google Scholar 

  • Shimahara, T., Pichon, Y., Lees, G. and Beadle, D. J. (1988) Gamma-aminobutyric acid receptors on cultured cockroach brain neurones. J. exp. Biol. 131, 231–244.

    Google Scholar 

  • Study, R. E. and Barker, J. L. (1981) Diazepam and (—)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured neurones. Proc. Natl Acad. Sci. USA 78, 7180–7184.

    Article  Google Scholar 

  • Taylor, A., Bermudez, I. and Beadle, D. J. (1992) A patch-clamp study of effects of dihydroavermectin on cockroach neurones in vitro. Pestic. Sci., in press.

    Google Scholar 

  • Twyman, R. E., Rogers, C. J. and MacDonald, R. L. (1989) Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann. Neurol. 25, 213–220.

    Article  Google Scholar 

  • Wafford, K. A., Sattelle, D. B., Gant, D. B., Eldefrawi, A. T. and Eldefrawi, M. E. (1989) Non-competitive inhibition of GABA receptors in insect and vertebrate CNS by endrin and lindane. Pest. Biochem. Physiol. 33, 213–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Taylor, A., Bermudez, I., Beadle, D.J. (1993). Pharmacology of the GABA receptor of insect central neurones in culture: A patch-clamp study. In: Pichon, Y. (eds) Comparative Molecular Neurobiology. EXS, vol 63. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7265-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7265-2_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7267-6

  • Online ISBN: 978-3-0348-7265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics