Acetylcholine receptor molecules of the nematode Caenorhabditis elegans

Part of the EXS book series (EXS, volume 63)


Receptors for acetylcholine are present in nematodes. Studies using physiological and biochemical methods have revealed the existence of nicotinic acetylcholine receptors with a novel pharmacology. Caenorhabditis elegans provides a particularly suitable organism with which to investigate such receptors using molecular genetic approaches. Mutants resistant to the cholinergic agonist (and anthelmintic drug) levamisole have permitted the isolation of a number of genes, including structural subunits of the nicotinic acetylcholine receptor. The only known viable mutants of nicotinic receptors are those of Caenorhabditis elegans. This organism offers the prospect of studying the developmental and regulatory effects of the loss of a single component of the receptor. Using Caenorhabditis elegans it is possible to select interesting phenotypic mutations by in vivo mutagenesis before determining the causative lesion. Resistance genes other than those encoding structural subunits are of particular interest, as they will encode additional polypeptides closely associated with nicotinic receptor function. Such proteins are often difficult or impossible to identify using conventional biochemical approaches, whereas genetic selection should permit their identification.


Acetylcholine Receptor Caenorhabditis Elegans Xenopus Oocyte Nicotinic Acetylcholine Receptor Structural Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, D., Lummis, S. C. R., Leicht, W., Breer, H. and Sattelle, D. B. (1991) Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Perstic. Sci. 33, 197–204.CrossRefGoogle Scholar
  2. Barnard, E. A., Darlison, M. G., Marshall, J. and Sattelle, D. B. (1989) Structural characteristics of cation and anion channels directly operated by agonists, in: Ion Transport, Chapt. 11, pp. 159–181. Academic Press Limited, New York.Google Scholar
  3. Bertrand, D., Ballivet, M. and Rungger, D. (1990) Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in Xenopus oocytes. Proc. Natl Acad. Sci. USA 87, 1993–1997.CrossRefGoogle Scholar
  4. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.Google Scholar
  5. del Castillo, J., de Melo, W. C. and Morales, T. A. (1963) The physiological role of acetylcholine in the neuromuscular system of Ascaris lumbricoides. Archs int. Physiol. Biochim. 71, 741–757.CrossRefGoogle Scholar
  6. Chalfie, M (1984) Neuronal development in Caenorhabditis elegans. Trends Neurosci. 7, 197–202.CrossRefGoogle Scholar
  7. Chalfie, M. and Sulston, J. (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Devi Biol. 82, 358–370.CrossRefGoogle Scholar
  8. Chalfie, M., Thompson, J. N. and Sulston, J. E. (1983) Induction of neurone branching in Caenorhabditis elegans . Science 221, 61–63.CrossRefGoogle Scholar
  9. Chalfie, M. and White, J. (1988) The nervous system, in: The Nematode Caenorhabditis elegans, Chapt. 11, pp. 337–392. Ed. W. B. Wood. Cold Spring Harbor Laboratory.Google Scholar
  10. Chiappinelli, V. A., Hue, B., Mony, L. and Sattelle, D. B. (1989) κ-Bungarotoxin blocks nicotinic transmission at an identified invertebrate central synapse. J. Exp. Biol. 141, 61–74.Google Scholar
  11. Chiba, A., Shepherd, D. and Murphey, R. K. (1988) Synaptic rearrangement during postembryonic development in the cricket. Science 240, 901–905.CrossRefGoogle Scholar
  12. Claudio, T. (1990) Molecular genetics of acetylcholine receptor channels, in: Molecular Neurobiology, Chapt. 3, pp. 63–142. Eds D. M. Glover and B. D. Hames. IRL Press, Oxford.Google Scholar
  13. Colquhoun, L., Holden-Dye, L. and Walker, R. J. (1991) The pharmacology of cholinoceptors on the soomatic muscle cells of the parasitic nematole Ascaris suum. J. Exp. Biol. 158, 509–530.Google Scholar
  14. Cooper, E., Courturier, S. and Ballivet, M. (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350, 235–237.CrossRefGoogle Scholar
  15. Coulson, A., Sulston, J., Brenner, S. and Karn, J. (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 83, 7821–7825.CrossRefGoogle Scholar
  16. Culotti, J. and Klein, W. L. (1983) Presence of muscarinic acetylcholine receptors in wild-type and cholinergic mutants Caenorhabditis elegans. of J. Neurosci. 3, 359–368.Google Scholar
  17. David, J. A. and Sattelle, D. B. (1984) Actions of cholinergic pharmacological agents on cell body membrane of fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J. Exp. Biol. 108, 119–136.Google Scholar
  18. Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucl. Acid Res. 12, 387–395.CrossRefGoogle Scholar
  19. Driscoll, M. and Chalfie, M. (1992) Developmental and abnormal cell death in Caenorhabditis elegans. Trends Neurosci. 15, 15–19.CrossRefGoogle Scholar
  20. Feng, D.-F. and Doolittle, R. F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–360.CrossRefGoogle Scholar
  21. Fleming, J. T., Riina, H. A. and Sattelle, D. B. (1991) Acetylcholine and GABA receptors of Caenorhabditis elegans expressed in Xenopus oocytes. J. Physiol. 438, 37 I P.Google Scholar
  22. Ham, G. H. and Cameron, G. N. (1986) The EMBL data library. Nucl. Acid Res 14, 5–9.CrossRefGoogle Scholar
  23. Harrow, I. D. and Gration, K. A. F. (1985) Mode of action of the anthelmintics morantel, pyrantel and levamisole on muscle cell membranes of the nematode Ascaris suum. Pest. Sci. 16, 662–672.CrossRefGoogle Scholar
  24. Hedgecock, E. M., Culotti, J. G. Thomson, J. N. and Perkins, L. A. (1985) Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurones with fluorescein dyes. Devl Biol. 111, 158–170.CrossRefGoogle Scholar
  25. Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558.CrossRefGoogle Scholar
  26. Johnson, C. D. and Stretton, A. O. W. (1985) Localization of choline acetyltransferase within identified motoneurons of the nematode Ascaris. J. Neurosci. 5, 1984–1992.Google Scholar
  27. Lee, D. L. (1962) The distribution of esterase enzymes in Ascaris lumbricoides. Parasitology 52, 241–260.CrossRefGoogle Scholar
  28. Lewis, J. A., Wu, C.-H, Berg, H. and Levine, J. H. (1980a) The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95, 905–928.Google Scholar
  29. Lewis, J. A., Wu, C.-H, Levine, J. H. and Berg, H. (1980b) Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989.CrossRefGoogle Scholar
  30. Lewis, J. A., Fleming, J. T., McLafferty, S., Murphy, H. and Wu, C. (1987a) The levamisole receptor, a cholinergic receptor of the nematode Caenorhabditis elegans. Mol. Pharmac. 31, 185–193.Google Scholar
  31. Lewis, J. A., Elmer, J. S., Skimming, J., McLafferty, S., Fleming, J. and McGee, T. (1987b) Cholinergic receptor mutants of the nematode Caenorhabditis elegans. J. Neurosci. 7, 3059–3071.Google Scholar
  32. Lewis, J. A. and Fleming, J. T. (1992) Cloning nematode acetylcholine receptors, in: Neurotox’91: Molecular Basis of Drug and Insecticide Action, (eds I. Duce, P. N. R. Usherwood, R. C. Reay and M. G. Ford. Elsevier, Amsterdam, pp. 155–164.Google Scholar
  33. Lipscombe, D. and Rang, H. P. (1988) Nicotinic receptors of frog ganglia resemble Pharamcologically those of skeletal muscle. J. Neurosci. 8, 3258–3265.Google Scholar
  34. Pennington, A. J. and Martin, R. J. (1990) A patch-clamp atudy of acetylcholin-activated ion channels in Ascaris suum muscle. J. Exp. Biol. 154, 201–221.Google Scholar
  35. Pinnock, R. D., Sattelle, D. B., Gration, K. A. F. and Harrow, I. D. (1988) Actions of potent cholinergic anthelmintics (morantel, pyrantel and levamisole) on an identified insect neurone reveal pharmacological differences between nematode and insect acetylcholine receptors. Neuropharmacology 27, 843–848.CrossRefGoogle Scholar
  36. Raftery, M. A., Hunkapillar, M. W., Strader, C. D. and Hood, L. E. (1980) Acetylcholine receptor: complex of homologous subunits. Science 208, 454–474.CrossRefGoogle Scholar
  37. Rozhkova, E. K., Malyutina, T. A. and Shishov, B. A. (1980) Pharmacological characteristics of cholinoreception in somatic muscle of the nematode Ascaris suum. Gen. Pharmac. 11, 141–146.CrossRefGoogle Scholar
  38. Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K. and Numa, S. (1985) Role of acetylcholic receptor subunits in gating of the channel. Nature 318, 538–543.CrossRefGoogle Scholar
  39. Sattelle, D. B. (1980) Acetylcholine receptors of insects. Adv. Insect Physiol. 15, 215–315.CrossRefGoogle Scholar
  40. Sattelle, D. B. (1986) Insect acetylcholine receptors-biochemical and physiological approaches, in: Neuropharmacology and Pesticide Action, chapt. 21, pp. 445–497. eds M. G. Ford, G. G. Lunt, R. C. Reay and P. N. R. Usherwood. Ellis Horwood Series in Biomedicine.Google Scholar
  41. Sattelle, D. B., Buckingham, S. D., Wafford, K. A. Sherby, S. M., Barry, N. M., Eldefrawi, A. T., Eldefrawi, M. E. and May, T. E. (1989) Actions of the insecticide 2(nitromethylene)tetrahydro-l,3-thiazine on insect and vertebrate nicotinic acetylcholine receptors. Proc. R. Soc. London B 237, 501–514.CrossRefGoogle Scholar
  42. Sattelle, D. B., Lummis, S. C. R., Riina, H. A., Fleming, J. T., Anthony, N. M. A. and Marshall, J. (1992) Functional expression in Xenopus oocytes of invertebrate ligand-gated ion channels, in: Mol. Basis Drug Insect. Action. Eds I. Duce, P. N. R. Usherwood, R. C. Reay and M. C. Ford. Elsevier, pp. 203–219.Google Scholar
  43. Scheutze, S. M and Role, L. W. (1987) Developmental regulations of nicotinic acetylcholine receptors. Annl. R. Neurosci. 10, 403–457.CrossRefGoogle Scholar
  44. Sulston, J. E. and Horvitz, H. R. (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Devi Biol. 56, 110–156.CrossRefGoogle Scholar
  45. Trimmer, B. A. and Weeks, J. C (1989) Effects of nicotinic and muscarinic agents on an identified motoneurone and its direct afferent inputs in larval Manduca sexta. J. Exp. Biol. 144, 303–337.Google Scholar
  46. Walrond, J. P., Kass, I. S., Stretton, A. O. W. and Donmoyer, J. E. (1985) Identification of excitatory and inhibitory motoneurones in the nematode Ascaris by electrophysical techniques. J. Neurosci. 5, 1–8.Google Scholar
  47. Walrond, J. P. and Stretton, A. O. W. (1985) Excitatory and inhibitory activity in the dorsal musculature of the nematode Ascaris evoked by single dorsal excitatory motoneurones. J. Neurosci. 5, 16–22.Google Scholar
  48. White, J. G. (1985) Neuronal connectivity in Caenorhabditis elegans. Trends Neurosci. 8, 277–283.CrossRefGoogle Scholar
  49. White, J. G., Southgate, E., Thomson, J. N. and Brenner, S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. London B 314, 1–340.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1993

Authors and Affiliations

  1. 1.AFRC Laboratory of Molecular Signalling, Department of ZoologyUniversity of CambridgeCambridgeEngland
  2. 2.Laboratory of Molecular BiologyMRC CentreCambridgeEngland
  3. 3.Division of Life SciencesThe University of Texas at San AntonioSan AntonioUSA

Personalised recommendations