Advertisement

Potassium conductance and potassium channels in a primitive insect: The cockroach Periplaneta americana

Chapter
  • 130 Downloads
Part of the EXS book series (EXS, volume 63)

Summary

Potassium currents and underlying single channel activity have been recorded in various nerve preparations from the central nervous system of the American cockroach. The properties of the potassium current in isolated giant axons, identified DUM and Df neurons and cultured embryonic and adult brain neurons were compared. The underlying single channel events were recorded using the patch-clamp technique and analyzed. The results indicate that several families of potassium channels exist in cockroach neurons, some of which share common properties with other invertebrate and vertebrate neurons.

Keywords

Potassium Channel Potassium Current Giant Axon Potassium Conductance Adult Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich, R. W., Getting, P. A., and Thompson, S. H. (1979) Inactivation of delayed outward current in molluscan neurone somata. J. Physiol., London 291, 507–530.Google Scholar
  2. Amar, M. (1991) Etude biophysique et pharmacologique des canaux ioniques de la membrane de neurones en culture d’un inscecte: la blatte Periplaneta americana. Thèse de l’Université Paris 7, Spécialité Biophysique Moléculaire. 452 p.Google Scholar
  3. Beadle, D. J., and Hicks, D. (1985) Insect nerve culture, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 5, Nervous System: Structure and Motor Function, pp. 181–211. Eds G. A. Kerkut and E. I. Gilbert. Pergamon Press, Oxford.Google Scholar
  4. Begenisich, T., and Stevens, C. F. (1975) How many conductance states do potassium channels have? Biophys. J. 15, 843–846.CrossRefGoogle Scholar
  5. Boistel, J., and Coraboeuf, E. (1958) Rôle joué par les ions sodium dans la genèse de l’activité électrique du tissus nerveux d’insecte. C. r. Acad. Sci., Paris 247, 1781–1783.Google Scholar
  6. Bregetovski, P., Redkozubov, A., and Alexeev, A. (1968) Elevation of intracellular calcium reduces voltage-dependent potassium conductance in human T cells. Nature 319, 776–778.CrossRefGoogle Scholar
  7. Byerly, L., and Leung, H. T. (1988) Ionic current of Drosophila neurons in embryonic cultures. J. Neurosci. 8, 4379–4393.Google Scholar
  8. Cahalan, M. D., Chandy, K. G., DeCoursey, T. E., and Gupta, S. (1985) A voltage-gated potassium channel in human T lymphocytes. J. Physiol., London 358, 197–237.Google Scholar
  9. Christensen, B. N., Shimahara, T., Pichon, Y., Beadle, D. J., and Larmet, Y. (1985) Potassium currents in developing cultured cockroach neurons. Biophys. J. 49, 574a.Google Scholar
  10. Christensen, B. N., Larmet, Y., Shimahara, T., Beadle, D. J., and Pichon, Y. (1988) Ionic currents in neurones cultured from embryonic cockroach (Periplaneta americana) brains. J. Exp. Biol. 135, 193–214.Google Scholar
  11. Christensen, B. N., Larmet, Y., Shimahara, T., Beadle, D. J., and Pichon, Y. (1988) Ionic currents in neurones cultured from embryonic cockroach (Periplaneta americana) brains. J. exp. Biol. 135, 193–214.Google Scholar
  12. Conti, F., DiFelice, L. J., and Wanke, E. (1975) Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol., London 248, 45–82.Google Scholar
  13. Dunbar, S. J., and Pitman, R. M. (1985) Unitary currents recorded from the soma of identified cockroach neurones using the patch clamp technique. J. Physiol., London 367, 88 p.Google Scholar
  14. Frankenhäeuser, B. (1963) A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol., London 169, 424–430.Google Scholar
  15. Gardner, P. I. (1986) Single-channel recordings from three K+-sensitive currents in cultured chick ciliary ganglion neurons. J. Neurosci. 6, 2106–2116.Google Scholar
  16. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cell and cell-free membrane patches. Pflügers Arch. 391, 85–100.CrossRefGoogle Scholar
  17. Hodgkin, A. L., and Huxley, A. F. (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., London 116, 449–472.Google Scholar
  18. Hodgkin, A. L., and Huxley, A. F. (1952b) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., London 117, 500–544.Google Scholar
  19. Jego, P., Callec, J. J., Pichon, Y., and Boistel, J. (1970) Etude électrophysiologique de corps cellulaires excitables du 6ème ganglion abdominal de Periplaneta americana: aspects électriques et ioniques. C. r. Soc. Biol. 164, 893–904.Google Scholar
  20. Julian, F. J., Moore, J. W., and Goldman, D. E. (1962) Current-voltage relations in the lobster giant axon membrane under voltage-clamp conditions. J. Gen. Physiol. 1271–1238.Google Scholar
  21. Larmet, Y. (1989) Contribution à l’étude de la conductance potassique dans deux préparations d’invertébrés: l’axon géant de calmar (Loligo forbesi) et les neurones de cerveaux d’embryons de blattes (Periplaneta americana) en culture. Thèse de l’Université Paris 6, Spécialité Biophysique. 167 p.Google Scholar
  22. Llano, I., Webb, C. K., and Bezanilla, F. (1988) Potassium conductance of the squid giant axon. J. Gen. Physiol. 92, 179–196.CrossRefGoogle Scholar
  23. Lux, H. D., and Hofmeier, G. (1982a) Properties of a calcium- and voltage-activated potassium current in Helix pomatia neurones. Pflügers Arch. 394, 61–69.CrossRefGoogle Scholar
  24. Lux, H. D., and Hofmeier, G. (1982b) Activation characteristics of the calcium-dependent outward potassium current in Helix. Pflügers Arch. 394, 70–77.CrossRefGoogle Scholar
  25. Marty, A., and Neher, E. (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J. Physiol., London 367, 117–141.Google Scholar
  26. Moore, L. E., Fishman, H. M., and Poussart, D. (1979) Chemically induced K conduction noise in squid axon. J. Membr. Biol. 47, 99–112.CrossRefGoogle Scholar
  27. Neher, E., and Sakmann, B. (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 794–802.CrossRefGoogle Scholar
  28. Neumcke, B., Schwartz, W., and Stämpfli, R. (1980) DifferenceJ)étween K channels in motor and sensory nerve fibres of the frog as revealed by fluctuation analysis. Pflügers Arch. 387, 9–16.CrossRefGoogle Scholar
  29. Nightingale, W. D., and Pitman, R. M. (1989) Ionic currents in the soma of an identified cockroach motoneurone recorded under voltag-clamp. Comp. Biochem. Physiol. 93A, 85–93.CrossRefGoogle Scholar
  30. Pelhate, M., and Pichon, Y. (1984) Relative efficacy of 4-AP and 3,4-DAP on K currents in giant axons of Loligo forbesi. J. Physiol., London 353, 79 p.Google Scholar
  31. Pelhate, M., and Sattelle, D. B. (1982) Pharmacological properties of insect axons: a review. J. Insect Physiol. 28, 889–903.CrossRefGoogle Scholar
  32. Pelhate, M., Hue., B., Pichon, Y., and Chanelet, J. (1981) Interactions of aminopyridines and related compounds with ionic channels in the isolated cockroach axon, in: Effects of Aminopyridines and Similarly Acting Drugs on Nerves, Muscles and Synapses, pp. 238. Eds P. Lechat, S. Thesleff and W. C. Baumann. Pergamon, Oxford.Google Scholar
  33. Pichon, Y. (1967) Application de la technique du voltage-imposé à l’étude de la fibre nerveuse isolée d’insecte. J. Physiol., Paris 9, 282.Google Scholar
  34. Pichon, Y. (1968) Nature des courants membranaires dans une fibre nerveuse d’insecte: l’axon géant de Periplaneta americana. C. r. Soc. Biol. 162, 2233–2240.Google Scholar
  35. Pichon, Y. (1974) Axonal conduction in insects, in: Insect Neurobiology, pp. 73–117. Ed. J. E. Treherne. North Holland, Amsterdam.Google Scholar
  36. Pichon, Y. (1976) Pharmacological properties of the ionic channels in insect axons, in: Perspectives in Experimental Biology, pp. 297–312. Ed. P. Spencer Davis. Pergamon Press, Oxford.Google Scholar
  37. Pichon, Y., and Boistel, J. (1967) Current-voltage relations in the isolated giant axon of the cockroach under voltage-clamp conditions. J. exp. Biol. 47, 343–355.Google Scholar
  38. Pichon, Y., Poussart, D., and Lees, G. V. (1983) Membrane ionic currents, current noise and admittance in isolated cockroach axons, in: Structure and function in Excitable Cells, pp. 211–226. Eds D. C. Chang, I. Tasaki, W. J. Adelman and H. R. Leuchtag. Plenum Press, New York.CrossRefGoogle Scholar
  39. Pichon, Y., Larmet Y., Christensen, B. N., Shimahara, T., and Beadle, D. J. (1986) Voltage dependent conductances in cultured cockroach neurones, in: Insect Neurochemistry and Neurophysiology, pp. 383–386. Eds A. B. Borkovec and D. B. Gelman. Humana Press, Clifton.CrossRefGoogle Scholar
  40. Pitman, R. M. (1975a) The ionic dependence of action potentials induced by colchicine in an insect motoneurone cell body. J. Physiol., London 247, 511–520.Google Scholar
  41. Pitman, R. M. (1975b) Calcium-dependent action potentials in the cell body of a motorneurone, J. Physiol., London 291, 327–337.Google Scholar
  42. Solc, C. K., and Aldrich, R. W. (1988) Voltage-gated potassium channels in larval CNS neurons of Drosophila. J. Neurosci. 8, 2556–2570.Google Scholar
  43. Standen, N. B., Stanfield, P. R. and Ward, T. A. (1985) Properties of single potassium channels in vesicles formed from the sarcolemma of frog skeletal muscle. J. Physiol., London 364, 339–358.Google Scholar
  44. Thomas, M. V. (1984) Voltage-clamp analysis of a calcium-mediated potassium conductance in cockroach (Periplaneta americana) central neurones. J. Physiol., London 350, 159–178.Google Scholar
  45. Thompson, S. H. (1977) Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol., London 265, 465–488.Google Scholar
  46. van den Berg, R. J., Siebenga, E., and de Bruin, G. (1977) Potassium ion noise currents and inactivation in voltage-clamped nodes of Ranvier. Nature 265, 177–179.CrossRefGoogle Scholar
  47. Wei, A., Covarruvias, M., Butler, A., Baker, K., Pak, M., and Salkoff, L. (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248, 599–603.CrossRefGoogle Scholar
  48. Yamamoto, D., and Suzuki, N. (1989) Characterization of single non-inactivating potassium channels in primary neuronal cultures of Drosophila. J. exp. Biol. 145, 173–184.Google Scholar
  49. Yamamoto, D., Pinnock, R. D., and Sattelle, D. B. (1989) Switching between two types of bursting activity of single Ca2+-activated K+ channels in dissociated neurons. J. Neuroendocr. 1, 89–94.CrossRefGoogle Scholar
  50. Yamasaki, T., and Narahashi, T. (1959) The effects of potassium and sodium ions on the resting and action potentials of the cockroach giant axon. J. Insect Physiol. 3, 146–158.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1993

Authors and Affiliations

  1. 1.Equipe de Neurobiologie, Neuropharmacologie Moléculaire et Ecotoxicologie, CNRSUniversité de Rennes IRennes CedexFrance

Personalised recommendations