Skip to main content

Molecular basis of K+ channel inactivation gating

  • Chapter
Comparative Molecular Neurobiology

Part of the book series: EXS ((EXS,volume 63))

Summary

The gating of many K+, Na+ and Ca++ channels is driven by changes in membrane potential. Part of the gating mechanism, the voltage sensing S4, a proposed transmembrane segment, has been identified. Movement in the membrane electric field of the charged S4 is thought to precede the opening and closing of the activation gate. The physical basis of the conformational changes involved in gating has yet to be elucidated. Here, we discuss a domain that appears to lie at the cytoplasmic mouth of K+ channels and to form a receptor for the inactivation gate. We examine the possibility that a) the physical attachment of this receptor/mouth to the S4 allows inactivation to be coupled to the voltage dependent conformational changes that open the channel and b) explains the immobilization of gating charge by inactivation. We also address the physiological ramifications of such structural coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich, R. W., Corey, D. P. and Stevens, C. F. (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306, 436–441.

    Article  Google Scholar 

  • Aldrich, R. W. and Stevens, C. F. (1983) Inactivation of open and closed sodium channels determined separately. Cold Spring Harbor Symp. Quant. Biol. 48, 147–153.

    Article  Google Scholar 

  • Almers, W. (1978) Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82, 96–190.

    Article  Google Scholar 

  • Anderson, M. P., Berger, H. A., Rich, D. P., Gregory, R. J., Mith, A. E. and Welsh, M. J. (1991) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67, 775–784.

    Article  Google Scholar 

  • Armstrong, C. M. (1969) Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection into squid axons. J. Gen. Physiol. 54, 553–575.

    Article  Google Scholar 

  • Armstrong, C. M. (1975) Ionic pores, gates, and gating currents. Quart. Rev. Biophys. 7, 179–210.

    Article  Google Scholar 

  • Armstrong, C. M. (1981) Sodium channels and gating currents. Physiol. Rev. 61, 644–683.

    Google Scholar 

  • Armstrong, C. M. and Bezanilla, F. (1974) Charge movement associated with the opening and closing of the activation gate of the Na channels. J. Gen. Physiol.63, 533–552.

    Article  Google Scholar 

  • Armstrong, C. M., Bezanilla, F. and Rojas, E. (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62, 375–391.

    Article  Google Scholar 

  • Ashcroft, F. M. (1988) Adenosine 5′-triphosphate-sensitive potassium channels. Ann. Rev. Neurosci. 11, 97–118.

    Article  Google Scholar 

  • Ashcroft, S. J. H. and Ashcroft, F. M. (1989) The role of the ATP-sensitive K+ -channel in stimulus-response coupling in the pancreatic β-cell. Hormones and Cell Reg. 198, 99–103.

    Google Scholar 

  • Bezanilla, F. and Armstrong, C. M. (1977) Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70, 567–590.

    Article  Google Scholar 

  • Bezanilla, F., Perozo E., Papazian, D. M. and Stefani, E. (1991) Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254, 679–683.

    Article  Google Scholar 

  • Bezanilla, F., White, M. M. and Taylore, R. E. (1982) Gating currents associated with potassium channel activation. Nature 296, 657–659.

    Article  Google Scholar 

  • Blatt, M. R., Thiel, G. and Trentham, D. R. (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-triphosphate. Nature 346, 766–769.

    Article  Google Scholar 

  • Brown, D. A. (1990) G-proteins and potassium currents in neurons. Ann. Rev. Physiol. 52, 215–242.

    Article  Google Scholar 

  • Catteral, W. W. (1986) Molecular properties of voltage-sensitive sodium channels. Ann. Rev. Biochem. 55, 953–985.

    Article  Google Scholar 

  • Catterall, W. A. (1991) Structure and function of voltage-gated sodium and calcium channels. Curr. Opinion Neurobiol. 1, 5–13.

    Article  Google Scholar 

  • Choi, K. L., Aldrich, R. W. and Yellen, G. (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl Acad. Sci. USA, in press.

    Google Scholar 

  • Christie, M. J., North, R. A., Osborne, P. B., Douglass, J. and Adelman, J. P. (1990) Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned subunits. Neuron 4, 405–411.

    Article  Google Scholar 

  • Demo, S. D. and Yellen, G. (1991) The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7, 743–753.

    Article  Google Scholar 

  • Dhallan, R. S., Yau, K.-W., Schrader, K. A. and Reed, R. R. (1990) Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347, 184–187.

    Article  Google Scholar 

  • Greenblatt, R. E., Blatt, Y. and Montal, M. (1985) The structure of the voltage-sensitive sodium channel. Inferences derived from computer aided analysis of the Electrophorus electricus channel primary structure. FEBS Lett. 193, 125–134.

    Article  Google Scholar 

  • Guy, H. R. and Seetharamulu, P. (1986) Molecular model of the action potential sodium channel. Proc. Natl Acad. Sci. USA 83, 508–512.

    Article  Google Scholar 

  • Hille, B. (1984) Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    Google Scholar 

  • Hoshi, T., Zagotta, W. N. and Aldrich, R. W. (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538.

    Article  Google Scholar 

  • Hoshi, T., Zagotta, W. N. and Aldrich, R. W. (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556.

    Article  Google Scholar 

  • Imoto, K. et al. (1988) Nature 335, 645–648.

    Article  Google Scholar 

  • Isacoff, E. Y., Jan, Y. N. and Jan, L. Y. (1990) Evidence of the formation of heteromultimeric potassium channels in Xenopus oocytes. 345, 530–534.

    Google Scholar 

  • Isacoff, E. Y., Papazian, D., Timpe, L., Jan, Y. N. and Jan, L. Y. (1990) Molecular studies of gating in voltage-activated potassium channels. Cold Spring Harb. Symp. Quant. Biol. 55, 9–17.

    Article  Google Scholar 

  • Isacoff, E. Y., Jan, Y. N. and Jan, L. Y. (1991) Identification of a putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature 353, 86–90.

    Article  Google Scholar 

  • Iverson, L. E. and Rudy, B. (1990) The role of the divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the Shaker gene of Drosophila. J. Neurosci. 10, 2903–2916.

    Google Scholar 

  • Jan, L. Y. and Jan, Y. N. (1990) A superfamily of ion channels. Nature 345, 672.

    Article  Google Scholar 

  • Jan, L. Y. and Jan, Y. N. (1992) Structural elements involved in specific K+ channel functions. Ann. Rev. Physiol, (in press).

    Google Scholar 

  • Kaupp, U. B., Niidome, T., Tanabe, T., Terada, S., Bönigk, W. et al. (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766.

    Article  Google Scholar 

  • Koren, G., Liman, E. R., Logothetis, D. E., Nadal-Ginard, B. and Hess, P. (1990) Gating mechanism of a cloned potassium channel expressed in frog oocytes and mammalian cells. Neuron 4, 39–51.

    Article  Google Scholar 

  • Kosower, E. M. (1985) A structural and dynamic molecular model for the sodium channel of Electrophorus electricus. FEBS Lett. 182, 234–242.

    Article  Google Scholar 

  • Latorre, R., Corronado, R. and Vergara, C. (1984) K+ channels gated by voltage and ions. Ann. Rev. Physiol. 46, 485–495.

    Article  Google Scholar 

  • Liman, E. R., Hess, P., Weaver, F. and Koren, G. (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353, 752–756.

    Article  Google Scholar 

  • MacKinnon, R. (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232–235.

    Article  Google Scholar 

  • Matsuda, H. (1991) Magnesium gating of inwardly rectifying K+ channel. Ann. Rev. Physiol. 53, 289–298.

    Article  Google Scholar 

  • Matteson, D. R. and Carmeliet, P. (1988) Modification of K+ channel inactivation by papain and N-bromoacetamide. Biophys. J. 53, 641–645.

    Article  Google Scholar 

  • McCarren, M., Potter, B. V. L. and Miller, R. J. (1989) A metabolically stable analog of 1,4,5-inositol triphosphate activates a novel K+ conductance in pyramidal cells of the rat hippocampal slice. Neuron 3, 461–471.

    Article  Google Scholar 

  • McCormack, K., Lin, J. W., Iverson, L. E. and Rudy, B. (1990) Shaker K+ channel subunits form heteromultimeric channels with novel functional properties. Biochem. Biophys. Res. Commun. 171, 1361–1371.

    Article  Google Scholar 

  • Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., et al. (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320, 188–192.

    Article  Google Scholar 

  • Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N. and Jan, L. Y. (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749–753.

    Article  Google Scholar 

  • Papazian, D. M., Timpe, L. C., Jan, Y. N. and Jan, L. Y. (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349, 305–310.

    Article  Google Scholar 

  • Petersen, O. H. and Findlay, I. (1984) Electrophysiology of the pancreas. Physiol. Rev. 67, 1054–1116.

    Google Scholar 

  • Pongs, O., Kecskemethy, N., Muller, R., Krah-Jentgens, I., Baumann, A. et al. (1988) Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EM BO J. 7, 1087–1096.

    Google Scholar 

  • Rojas, E. and Rudy, B. (1976) Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres from Lolijo. J. Physiol. 262, 501–531.

    Google Scholar 

  • Rudy, B. (1988) Diversity and ubiquity of K+ channels. Neuroscience 25, 729–749.

    Article  Google Scholar 

  • Ruppersberg, J. P., Frank, R., Pongs, O. and Stocker, M. (1991) Cloned neuronal IK(A) channels reopen during recovery from inactivation. Nature 353, 657–660.

    Article  Google Scholar 

  • Ruppersberg, J. P., Schroter, K. H., Sakmann, B., Stocker, M., Sewing, S. et al. (1990) Heteromultimeric channels formed by rat brain potassium channel proteins. Nature 345, 535–537.

    Article  Google Scholar 

  • Sakmann, B. and Neher, E. (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann. Rev. Physiol. 46, 455–472.

    Article  Google Scholar 

  • Schroeder, J. I., Rascke, K. and Neher, E. (1987) Voltage dependence of K+ channels in guard-cell protoplasts. Proc. Natl Acad. Sci. USA 84, 4108–4112.

    Article  Google Scholar 

  • Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. and Jan, L. Y. (1988a) Multiple potassium channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331, 137–142.

    Article  Google Scholar 

  • Slesinger, P. A. and Lansman, J. B. (1991) Reopening of Ca++ channels in mouse cerebellar neurons at resting membrane potentials during recovery from inactivation. Neuron 7, 755–762.

    Article  Google Scholar 

  • Solc, C. K. and Aldrich, R. W. (1990) Gating of single non-Shaker A-type potassium channels in larval Drosophila neurons. J. Gen. Physiol. 96, 135–165.

    Article  Google Scholar 

  • Stocker, M., Stuhmer, W., Wittka, R., Wang, X., Muller, R. et al. (1990) Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels. Proc. Natl Acad. Sci. USA 87, 8903–8907.

    Article  Google Scholar 

  • StĂĽhmer, W. (1991) Structure-function studies of voltage-gated ion channels. Ann. Rev. Biophys. Biophysical Chem. 20, in press.

    Google Scholar 

  • StĂĽhmer, W., Conti, F., Stocker, M., Pongs, O. and Heinemann, S. H. (1991) Gating currents of inactivating and non-inactivating potassium channels in Xenopus oocytes.

    Google Scholar 

  • StĂĽhmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M. et al., (1989) Structural parts involved in activation and inactivation of sodium channel. Nature 339, 597–603.

    Article  Google Scholar 

  • Szabo, G. and Otero, A. S. (1990) G protein mediated regulation of K+ channels in heart, Ann. Rev. Physiol. 52, 293–305.

    Article  Google Scholar 

  • Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. and Jan, L. Y. (1987) Sequence of a probable potassium channel component encoded at the Shaker locus of Drosophila. Science 237, 770–775.

    Article  Google Scholar 

  • Timpe, L. C., Jan, Y. N. and Jan. L. Y. (1988) Four cDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron 1, 659–667.

    Article  Google Scholar 

  • Timpe, L. C., Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., et al. (1988a) Expression of functional potassium channels from Shaker CDNA in Xenopus oocytes. Neuron 331, 143–145.

    Google Scholar 

  • Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M., et al. (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248, 599–603.

    Article  Google Scholar 

  • Zagotta, W. N. and Aldrich, R. W. (1990) Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J. Gen. Physiol. 95, 29–60.

    Article  Google Scholar 

  • Zagotta, W. N., Hoshi, T. and Aldrich R. W. (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571.

    Article  Google Scholar 

  • Zimmerberg, J., Bezanilla, F. and Parsegian, V. A. (1990) Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys. J. 57, 1049–1064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Isacoff, E.Y., Jan, Y.N., Jan, L.Y. (1993). Molecular basis of K+ channel inactivation gating. In: Pichon, Y. (eds) Comparative Molecular Neurobiology. EXS, vol 63. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7265-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7265-2_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7267-6

  • Online ISBN: 978-3-0348-7265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics