Advertisement

Bioamine receptors: Evolutionary and functional variations of a structural leitmotiv

Chapter
Part of the EXS book series (EXS, volume 63)

Summary

Bioamines act as neurohormonal messengers through their binding to receptors which belong to the largest membrane protein family known so far: the seven spanning membrane receptors. This class of receptors transmits the effect of agonist binding to intracellular effectors by interacting with an intermediary G-protein. The diversity of receptor subtypes inside the protein family, observed in many animal species, is the result of a long evolutionary process. The tendency to protein diversification depends upon gene duplications and upon the continuous accumulation of mutations. The maintenance of vital functions in organisms, however, strictly requires enough structural conservation to ensure the functionality of the corresponding proteins. Both forces cooperate to ensure the adaptation of organisms to a changing environment. We have reviewed here the main conformational and functional constraints exerted on the structure of the bioamine receptors. They are mainly the transmembrane conformation of the receptors, their ability to bind ligands, to interact with G-proteins and to desensitize. The molecular basis of the biochemical and pharmacological differences used to classify the members of the receptor family have also been examined. Interestingly, this classification is very close to that obtained by the molecular phylogeny methods, used to elucidate the evolutionary relationships between bioamine receptors. However, this latter classification allows to accurately distinguish between different receptor subtypes (paralogous genes) and species homologues (orthologous genes). In addition, the calculation of phylogenetical distances reveals two main periods of diversification: the first one occurred before the separation of arthropods from vertebrates, in the Precambrian, and corresponds to the appearance of the main subtypes of the bioamine receptors. The second one, which occurred about 400 million years ago, might accompany the cephalization of the CNS in vertebrates.

Keywords

Receptor Subtype Adrenergic Receptor Paralogous Gene Transmembrane Segment Intracellular Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist, R. P. (1948) A study of the adrenotropic receptors. Am. J. Physiol. 153, 586–600.Google Scholar
  2. Allen, L. F., Lefkowitz, R. J., Caron, M. G., and Cotecchia, S. (1992) G-protein coupled receptor genes as protooncogenes: constitutively activating mutation of α1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc. Natl. Acad. Sci. USA 88, 11354–11358.Google Scholar
  3. Applebury, M. L., and Hargrave, P. A. (1986) Molecular biology of the visual pigments. Vision Res. 26, 1881–1895.Google Scholar
  4. Äqvist., J., Luecke, H., Quiocho, F. A., and Warshel, A. (1991) Dipole localized at helix termini of proteins stabilize charges. Proc. Natl. Acad. Sci. USA 88, 2026–2030.Google Scholar
  5. Ariëns, E. J. (1954) Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems and theory. Arch. Int. Pharmacodyn. 99, 32–49.Google Scholar
  6. Ariëns, E. J., Van Rossum, J. M., and Koopman, P. C. (1960) Receptor reserve and threshold phenomena. I. Theory and experiments with autonomic drugs tested on isolated organs. Arch. Int. Pharmacodyn. 127, 459–478.Google Scholar
  7. Audigier, Y., Friedlander, M., and Blobel, G. (1987) Multiple topogenic sequences in bovine opsin. Proc. Natl. Acad. Sci. USA 84, 5783–5787.Google Scholar
  8. Beltzer, J. P., Fiedler, K., Fuhrer, C., Geffen, I., Handschin, C., Wessels, H. P., and Spiess, M. (1991) Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence. J. Biol. Chem. 266, 973–978.Google Scholar
  9. Benovic, J., Kühn, H., Weyand, I., Codina, J., Caron, M. G., and Lefkowitz, R. J. (1987) Functional desensitization of the isolated β-adrenergic receptor by the β-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48kDa protein). Proc. Natl. Acad. Sci. USA 84, 8879–8882.Google Scholar
  10. Benovic, J., Bouvier, M., Caron, M. G., and Lefkowitz, R. J. (1988) Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Annu. Rev. Cell Biol. 4, 405–428.Google Scholar
  11. Birnbaumer, L., Abramowitz, J., and Brown, A. (1990) Receptor-effector coupling by G-proteins. Biochem. Biophys. Acta 1031, 163–224.Google Scholar
  12. Boege, F., Neumann, E., and Helmreich, E. J. (1991) Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction. Eur. J. Biochem. 199, 1–15.Google Scholar
  13. Bourne, H. R., Sanders, D. A., and Mc Cormick, F. (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132.Google Scholar
  14. Bourne, H. R., Sanders D. A., and Mc Cormick, F. (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127.Google Scholar
  15. Bouvier, M., Hausdorff, W. P., DeBlasi, A. D., O’Dowd, B. F., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988) Removal of phosphorylation sites from the β-adrenergic receptor delays the onset of agonist-promoted desensitization. Nature 333, 370–373.Google Scholar
  16. Boyd, D., and Beckwith, J. (1990) The role of charged amino acids in the localization of secreted and membrane proteins. Cell 62, 1031–1033.Google Scholar
  17. Bray, D. (1990) Intracellular signalling as a parallel distributed process. J. Theor. Biol. 143, 215–231.Google Scholar
  18. Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P., Salon, J., Christie, M., Machida, C., Neve, K. A., and Civelli, O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336, 783–787.Google Scholar
  19. Chabre, M. (1985) Trigger and amplification mechanisms in visual phototransduction. Annu. Rev. Biophys. Biophys. Chem. 14, 331–360.Google Scholar
  20. Chabre, M., and Deterre, P. (1989) Molecular mechanism of visual transduction. Eur. J. Biochem. 179, 225–266.Google Scholar
  21. Chothia, C. (1990) The classification and origins of the protein folding patterns. Annu. Rev. Biochem. 59, 1007–1039.Google Scholar
  22. Chung, F. Z., Lentes, K. H., Gocayne, J., Fitzgerald, M., Robinson, D., Kerlavage, A. R., Fraser, C. M., and Venter, J. C. (1987) Cloning and sequence analysis of the human brain β-adrenergic receptor. Evolutionary relationship to rodent and avian β-receptors and porcine muscarinic receptors. FEBS Lett. 211, 200–206.Google Scholar
  23. Collins, S., Bolanowski, M. A., Caron, M. G., and Lefkowitz, R. J. (1988) β2-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J. Biol. Chem. 263, 9067–9070.Google Scholar
  24. Collins, S., Bolanowski, M. A., Caron, M. G., and Lefkowitz, R. J. (1989) Genetic regulation of β-adrenergic receptors. Annu. Rev. Physiol. 51, 203–215.Google Scholar
  25. Collins, S., Altschmied, J., Herbsman, O., Caron, M. G., Mellon, P. L., and Lefkowitz, R. J. (1990) A cAMP responsive element in the β2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J. Biol. Chem. 265, 19330–19335.Google Scholar
  26. Contreras, M. L., Wolfe, B. B., and Molinoff, P. (1986a) Thermodynamic properties of agonist interaction with the β-adrenergic receptor-coupled adenylate cyclase system. I: High and low affinity states of agonist binding to membrane bound β-adrenergic receptors. J. Pharmacol. Exp. Ther. 237, 154–164.Google Scholar
  27. Contreras, M. L., Wolfe, B. B., and Molinoff, P. B. (1986b) Thermodynamic properties of agonist interactions with the β-adrenergic receptor-coupled adenylate cyclase system. II: Agonist binding to soluble β-adrenergic receptors. J. Pharmacol. Exp. Ther. 237, 165–172.Google Scholar
  28. Cotecchia, S., Ostrowski, J., Kjelsberg, M. A., Caron, M. G., and Lefkowitz, R. J. (1992) Discrete amino acid sequences of the α1-adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis J. Biol. Chem. 267, 1633–1639.Google Scholar
  29. Csaba, G. (1980) Phylogeny and ontogeny of hormone receptors: The selection theory of receptor formation and hormonal imprinting. Biol. Rev. 55, 47–63.Google Scholar
  30. Dahl, S. G., Edvardsen, O., and Sylte, I. (1991) Molecular dynamics of dopamine at the D2 receptor. Proc. Natl. Acad. Sci. USA 88, 811–8115.Google Scholar
  31. Dalman, H. M., and Neubig, R. R., (1991) Two peptides from then α2A-adrenergic receptor alter receptor G-protein coupling by distinct mechanisms. J. Biol. Chem. 226, 11025–11029.Google Scholar
  32. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader C. D. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.Google Scholar
  33. Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scattergood, W., Rands, E., and Strader, C. D. (1987a) Structural features required for ligand binding to the β-adrenergic receptor. EM BO J. 6, 3269–3275.Google Scholar
  34. Dixon, R. A. F., Sigal, I. S., Rands, E., Register, R. B., Candelore, M. R., Blake, A. D., and Strader, C. D. (1987b) Ligand binding to the -adrenergic receptor involves its rhodopsin-like core. Nature 326, 73–77.Google Scholar
  35. Dohlman, H. G., Bouvier, M., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1987a) The multiple transmembrane spanning topography of the β2 adrenergic receptor. J. Biol. Chem. 262, 14282–14288.Google Scholar
  36. Dohlman, H. G., Caron, M. G., and Lefkowitz, R. J., (1987b) A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26, 2657–2664.Google Scholar
  37. Dohlman, H. G., Thorner, J., Caron, M. G., and Lefkowitz, R. J. Model systems for the study of seven-transmembrane segment receptors. (1991) Ann. Rev. Bioch. 60, 653–688.Google Scholar
  38. Donnelly, D., Johnson, M. S., Blundell, T. L., and Saunders, J. (1989) An analysis of the periodicity of conserved residues in sequence alignment of G-protein coupled receptors. Implications for the three-dimensional structure. FEBS Lett. 251, 109–116.Google Scholar
  39. Emorine, L. J., Marullo, S., Delavier-Klutchko, C., Kaveri, S. V., Durieu-Trautmann, O., and Strosberg, A. D. (1987) Structure of the gene for human β2-adrenergie receptor: expression and promoter characterisation. Proc. Natl. Acad. Sci. USA 84, 6995–6999.Google Scholar
  40. Engelman, D. M., Steitz, T. A., and Goldman, A. (1986) Identifying non-polar transbilayer helices in amono acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321–353.Google Scholar
  41. Fargin, A., Raymond, J. R., Lohse, M., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988) The genomic clone G-21 which resembles a β-Adrenergic receptor sequence encodes the HT1A receptor. Nature 335, 358–360.Google Scholar
  42. Findlay, J. B. C., and Pappin, D. J. C. (1986) The opsin family of proteins. Biochem. J. 238, 625–642.Google Scholar
  43. Frazer, A., Maayani, S., and Wolfe, B. B. (1990) Subtypes of receptors for serotonin. Annu. Rev. Pharmacol. Toxicol. 30, 307–348.Google Scholar
  44. Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., and Kobilka, B. K. (1987) Cloning of the cDNA for the β1 -adrenergic receptor. Proc. Natl. Acad. Sci. USA 84, 7920–7924.Google Scholar
  45. Frielle, T., Kiefer, D., Caron, M. G., and Lefkowitz, R. J. (1988a) Structural basis of β-adrenergic receptor subtype specificity studied with chimeric β1/β2-adrenergic receptors. Proc. Natl. Acad. Sci. USA 85, 9494–9498.Google Scholar
  46. Frielle, T., Kobilka, B. K., Lefkowitz, R. J., and Caron, M. G. (1988b) Human β1- and β2-adrenergic receptors: structurally and functionally related receptors derived from distinct genes. Trends. Neurol. Sci. 11, 321–324.Google Scholar
  47. Furchgott, R. F., The classification of adrenoreceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory, in: Catecholamines, pp. 283–335. Eds H. Blaschko and E. Muscholl. Springer Verlag, Berlin.Google Scholar
  48. Gans, C. (1989) Stages in the origin of vertebrates: analyses by the means of scenarios. Biol. Rev. 64, 221–268.Google Scholar
  49. Gans, C., and Northcutt, R. G. (1983) Neural crest and the origin of the Vertebrates: a new head. Science 220, 268–274.Google Scholar
  50. Gerschenfeld, H. M. (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol. Rev. 53, 1–119.Google Scholar
  51. Gierschik, P. and Jakobs, K. H. (1990) Receptor-stimulated GTPase activity of G-proteins, in: G-Proteins as Mediator of Cellular Signalling Processes, pp. 67–82. Eds M. D. Houslay and G. Milligan. John Wiley and Sons Ltd, New York.Google Scholar
  52. Gilman, A. J. (1987) G-proteins: transducers of receptor generated signals. Ann. Rev. Biochem. 56, 615–649.Google Scholar
  53. Grandy, D. K., Zhang, Y., Bouvier, C., Zhou, Q. Y., Johnson, R. A., Allen, L., Buck, K., Bunzow, J. R., Salon, J., and Civelli, O. (1991) Multiple human D5 dopamine receptor genes: a functional receptor and two pseudo-genes. Proc. Natl. Acad. Sci. USA 88, 9175–9179.Google Scholar
  54. Guest, S. J., Hadcock, J. R., Watkins, D. C., and Malbon, C. C. (1990) β1 - and β2-adrenergic receptors expression in differentiating 3T3-L1 cells. J. Biol. Chem. 265, 5370–5375.Google Scholar
  55. Hadcock, J. R., Wang, H. Y., and Malbon, C. C. (1989) Agonist-induced déstabilisation of β-adrenergic receptor mRNA. J. Biol. Chem. 264, 19928–19933.Google Scholar
  56. Hamblin, M. W., and Metcalf, M. A. (1991) Primary structure and functional characterization of a human 5HT1D-type serotonin receptor.Google Scholar
  57. Hartig, P. R., Branchek, T. A., and Weinshank, R. L. (1992) A subfamily of 5HT1D receptor genes. Trends Pharmacol. Sci. 13, 152–159.Google Scholar
  58. Hartmann, E., Rapoport, T. A., and Lodish, H. (1989) Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA 86, 5786–5790.Google Scholar
  59. Hausdorff, W. P., Caron, M. G., and Lefkowitz, R. J. (1990a) Turning-off the signal: desensitization of the β-adrenergic receptor function. FASEB J. 4, 2881–2889.Google Scholar
  60. Hausdorff, W. P., Hnatowitch, M., O’Dowd, B. F., Caron, M. G., and Lefkowitz, R. J. (1990b) A mutation of the β2-adrenergic receptor impairs agonist activation of adenylylcyclase without affecting high affinity agonist binding. J. Biol. Chem. 265, 1388–1393.Google Scholar
  61. Hen, R. (1992) Of mice and flies: commonalities among 5HT-receptors. Trends Pharmacol. Sci. 13, 160–165.Google Scholar
  62. Henderson, R., Baldwin, J., Ceska, T. H., Zemlin, F., Beckmann, E., and Downing, K. (1990) Model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy. J. Mol. Biol. 213, 899–929.Google Scholar
  63. Henderson, R. and Unwin, P. N. (1975) Three dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32.Google Scholar
  64. Hibert, M. F., Trumpp-Kallmeyer, Bruinvels, A., and Hoflack, J. (1991) Three dimensional models of neurotransmitter G-binding protein coupled receptors. Mol. Pharmacol. 40, 8–15.Google Scholar
  65. Higashijima, T., Uzu, S., Nakajima, T., and Ross, E. M. (1988) Mastoparan, a petide from wasp venom, mimics receptor by activating GTP-binding regulatory proteins (G-proteins). J. Biol. Chem. 263, 6491–6494.Google Scholar
  66. Hitzemann, R. (1988) Thermodynamic aspects of drug-receptor interactions. Trends Pharmacol. Sci. B, 408–411.Google Scholar
  67. Huang, R. R. C., Dehaven, R. N., Cheung, A., Diehl, R. E., Dixon, R. A. and Strader, C. D. (1990) Identification of allosteric antagonists of receptor-guanine nucleotide-binding protein interactions. Mol. Pharmacol. 37, 304–310.Google Scholar
  68. Kahlert, M., König, B., and Hofmann, K. P. (1990) Displacement of rhodopsin by GDP from three-loop interaction with transducin depends critically on the diphosphate B-position. J. Biol. Chem. 265, 18928–18932.Google Scholar
  69. Kaziro, Y., Itoh, H., Kozasa, T., Nakafuku, M., and Satoh, T. (1991) Structure and function of signal-transducing GTP-binding proteins. Annu. Rev. Biochem. 60, 349–400.Google Scholar
  70. Kebabian J. W. and Calne, D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.Google Scholar
  71. Keen, M. (1991) Testing model of agonism for G-protein coupled receptors. Trends Pharmacol. Sci. 12, 371–374.Google Scholar
  72. Kenakin, T. P. (1983) Receptor classification by selective agonists: coping with circularity and circumstantial evidence. Trends Pharmacol. Sci. 4, 291–295.Google Scholar
  73. Kenakin, T. P. (1984) The classification of drugs and drug receptors in isolated tissues. Pharmacol. Rev. 36, 165–222.Google Scholar
  74. Kenakin, T. P. (1989) Challenges for receptor theory as a tool for drug and drug receptor classification. Trends Pharmacol. Sci. 10, 18–22.Google Scholar
  75. Kimura, M. (1991) Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. Proc. Natl. Acad. Sci. USA 88, 5969–5973.Google Scholar
  76. Kimura, M., and Otha, T. (1974) On some principle governing molecular evolution. Proc. Natl. Acad. Sci. USA 71, 2848–2852.Google Scholar
  77. Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G., and Lefkowitz, R. J. (1992) Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site. J. Biol. Chem. 267, 1430–1433.Google Scholar
  78. Klein, W. L., Sullivan, J., Skorupa, A., and Aguilar J. S. (1989) Plasticity of neuronal receptors. FASEB J. 3, 2132–2140.Google Scholar
  79. Kobilka, B., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowitz, R. J., and Caron, M. G. (1987a) An intronless gene encoding a potential member of the family of receptors coupled to guanine regulatory proteins. Nature 329, 75–79.Google Scholar
  80. Kobilka, B. K., Frielle, T., Dohlman, H. G., Bolanowski, M. A., Dixon, R. A. F., Keller, P., Caron, M. G., and Lefkowitz, R. J. (1987b) Delineation of the intronless nature of the genes for the human and hamster β2-adrenergic receptor and their putative promoter regions. J. Biol. Chem. 262, 7321–7327.Google Scholar
  81. Kobilka, B., Kobilka, T. S., Kiefer, D. Regan, J. W., Caron, M. G., and Lefkowitz, R. J. (1988) Chimeric α2-, β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240, 1310–1316.Google Scholar
  82. König, B., Arendt, A., McDowell, J. H., Kahlert, M., Hargrave, P. A., and Hofmann, K. P. (1989) Three cytoplasmic loops of rhodopsin interact with transducin. Proc. Natl. Acad. Sci. USA 86, 6878–6882.Google Scholar
  83. Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa S. (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.Google Scholar
  84. Kukstas, L. A., Domec, C., Bascles, L., Bonnet, J., Verrier, D., and Israel, J. M. (1991) Different expression of the two D2 receptors, D2-415 and D2-444 in two types of lactotroph, each characterized by their response to dopamine, and modification of expression by sex steroids. Endocrinology 129, 1101–1103.Google Scholar
  85. Kurose, H., Regan, J., Caron, M. G., and Lefkowitz, R. J. (1991) Functional interaction of recombinant α2-adrenergic receptor subtypes and G-proteins in reconstituted phospholipid vesicles. Biochemistry 30, 3335–3341.Google Scholar
  86. Lathe, R. (1985) Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J. Mol. Biol. 183, 1–12.Google Scholar
  87. Li W. H., and Graur, D. (1991) Fundamentals of Molecular Evolution. Sinauer associates, Inc. Sunderland.Google Scholar
  88. Libert, F., Parmentier, M., Lefort, A., Dinsart, C, Van Sande, J., Maenhaut, C., Simons, M. J., Dumont, J. E., and Vassart, G. (1989) Selective amplification and cloning of four new members of the G-protein coupled receptor family. Science 244, 569–572.Google Scholar
  89. Lewin, B. (1990) Gene IV. Cell Press, Cambridge, Mass.Google Scholar
  90. Lohse, M. J., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1990a) Multiple pathways of rapid β2-adrenergic receptor desensitization. Delineation with specific inhibitors. J. Biol. Chem. 265, 3203–3209.Google Scholar
  91. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G., and Lefkowitz, R. J. (1990b) β-arrestin: a protein that regulates β-adrenergic receptor function. Science 248, 1547–1550.Google Scholar
  92. Lomasney, J. W., Cotecchia, S., Lorenz, W., Leung, W. Y., Schwinn, D. A., Yang-Feng, T. L., Brownstein, M., Lefkowitz, R. J., and Caron, M. G. (1991) Molecular cloning and expression of the cDNA for the α1A-adrenergic receptor, the gene for which is located on human chromosome 5. J. Biol. Chem. 266, 6365–6369.Google Scholar
  93. Lonai, P., and Orr-Urtreger, A. (1990) Homeogenes in mammalian development and the evolution of the cranium and central nervous system. FASEB J. 4, 1436–1443.Google Scholar
  94. Mackay, D. (1990) Agonist potency and apparent affinity: Interpretation using classical and steady-state ternary-complex models. Trends Pharmacol. Sci. 11, 17–22.Google Scholar
  95. Marullo, S., Emorine, L. J., Strosberg, A. D. and Delavier-Klutchko, C. (1990) Selective binding of ligand to β1, β2 or Chimeric βl/β2-adrenergic receptors involves multiple subsites. EM BO J. 9, 1471–1476.Google Scholar
  96. Matsui, H., Lefkowitz, R. J., Caron, M. G., and Regan, J. W. (1989) Localization of the fourth membrane spanning domain as a ligand binding site in the human platelet α2-adrenergic receptor. Biochemistry 28, 4125–4130.Google Scholar
  97. Mitchell, P. J. and Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 371–378.Google Scholar
  98. Mousli, M., Bueb, J. L., Bronner, C., Rouot, B., and Landry, Y. (1990) G-protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharmacol. Sci. 11, 358–362.Google Scholar
  99. Nathans, J. (1990) Determinants of visual pigment absorbance: Role of charged amino acids in the putative transmembrane segments. Biochemistry 29, 937–942.Google Scholar
  100. Neitz, M., Neitz, J., and Jacobs, G. H. (1991) Spectral tuning of pigments underlying red-green color vision, Science 252, 971–974.Google Scholar
  101. Nguyen, T., Sunahara, R., Marchese, A., Van Tol, H. H. M., Seeman, P. and O’Dowd, B. F. (1991) Transcription of a human dopamine D5 pseudogene. Biochem. Biophys. Res. Commum. 181, 16–21.Google Scholar
  102. O’Dowd, B. F., Lefkowitz, R. J., and Caron, M. G. (1989) Structure of the adrenergic and related receptors. Ann. Rev. Neurosci. 12, 67–83.Google Scholar
  103. Ohno, S. (1970) Evolution by gene duplication. Springer Verlag, Berlin.Google Scholar
  104. Okamoto, T., Murayama, Y., Hayashi, Y., Inagaki, M., Ogata, E., and Nishimoto, I. (1991) Identification of a Gs activator region of the β2-adrenergic receptor that is autoregulated via protein kinase A dependent phosphorylation. Cell 67, 723–730.Google Scholar
  105. Oakey, R. J., Caron, M. G., Lefkowitz, R. J., and Seldin, M. F. (1991) Genomic organization of adrenergic and serotonin receptors in the mouse: linkage mapping of sequence-related genes provides a method for examining mammalian chromosome evolution. Genomics 10, 338–344.Google Scholar
  106. Popot, J. L., and Engelman, D. M. (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29, 4031–4037.Google Scholar
  107. Ptashne, M. (1988) How eukaryotic transcriptional activators work. Nature 335, 683–689.Google Scholar
  108. Ransäs, L. A., and Insel, P. A. (1988) Subunit dissociation is the mechanism for hormonal activation of the Gs protein in native membranes. J. Biol. Chem. 263, 17239–17242.Google Scholar
  109. Rees, D. C., Komiya, H., Yeates, T. O., Allen, J. P., and Feher, G. (1989) The bacterial photosynthetic reaction center as a model for membrane proteins. Annu. Rev. Biochem. 58, 607–633.Google Scholar
  110. Roth, N. S., Campbell, P. T., Caron, M. G., Lefkowitz, R. J., and Lohse, M. J. (1991) Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 6201–6204.Google Scholar
  111. Ruffolo Jr, R. R. (1982) Important concepts of receptor theory. J. Auton. Pharmacol. 2, 277–295.Google Scholar
  112. Saitou, N., and Nei, M. (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  113. Sardet, C., Tardieu, A., and Luzzati, V. (1976) Shape and size of bovine rhodopsin: a small angle x-ray scattering study of a rhodopsin-detergent complex. J. Mol. Biol. 105, 383–407.Google Scholar
  114. Saudou, F., Amlaiki, N., Plassat, J. L., Borrelli, E., and Hen, R. (1990) Cloning and characterisation of a Drosophila tyramine receptor. EM BO J. 9, 3611–3617.Google Scholar
  115. Saudou, F., Boschert, U., Amlaiki, N., Plassat, J. L., and Hen, R. (1992) A family of Drosophila receptors with distinct intracellular signalling properties and expression patterns. EM BO J. 11, 7–17.Google Scholar
  116. Schofield, P. R., Shivers, B. D., and Seeburg, P. H. (1990) The role of receptor subtype diversity in the CNS. TINS 13, 8–11.Google Scholar
  117. Schmidt, A. W., and Peroutka, S. J. (1989) 5-hydroxytryptamine receptor “families”. FASEB J. 3, 2242–2249.Google Scholar
  118. Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., and Schwartz, J. C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151.Google Scholar
  119. Stephenson, R. P. (1956) A modification of receptor theory. Br. J. Pharmacol. Chemother. 11, 379–393.Google Scholar
  120. Strader, C. D., Sigal, I. S., and Dixon, R. A. F. (1989) Structural basis of β-adrenergic receptor function. FASEB J. 3, 1825–1832.Google Scholar
  121. Strange, P. G. (1990) Aspects of the structure of the D2 dopamine receptors. TINS 13, 373–378.Google Scholar
  122. Sundaresan, S., and Francke, U. (1989) Genes for β2-adrenergic receptor and platelet-derived growth factor receptor map to mouse chromosome 18. Somatic Cell Mol. Genet. 15, 367–371.Google Scholar
  123. Voigt, M. M., Laurie, D. J., Seeburg, P. H., and Bach, A. (1991) Molecular cloning and characterization of a rat brain cDNA encoding a 5HT1B-receptor. EM BO J. 10, 4017–4023.Google Scholar
  124. Von Heijne, G. (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the transmembrane topology. EM BO J. 5, 3021–3027.Google Scholar
  125. Von Heijne, G., and Gavel, Y. (1988) Topogenic signal in integral membrane proteins. Eur. J. Biochem. 174, 671–678.Google Scholar
  126. Von Heijne, G., and Manoil, C. (1990) Membrane proteins: from sequence to structure. Protein Eng. 4, 109–112.Google Scholar
  127. Vuong, T. M., and Chabre, M. (1990) Subsecond deactivation of transducin by endogenous GTP hydrolysis. Nature 346, 71–74.Google Scholar
  128. Witz, P., Amlaiki, N., Plassat, J. L., Maroteaux, L., Borrelli, E., and Hen, R. (1990) Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. Proc. Natl. Acad. Sci. USA 87, 8940–8944.Google Scholar
  129. Wong, S. K., Slaughter, C., Ruoho, A. E., and Ross, E. (1988) The catecholamine binding site of the β-adrenergic receptor is formed by juxtaposed membrane spanning domains. J. Biol. Chem. 263, 7925–7928.Google Scholar
  130. Wong, S. K., Parker, E. M., and Ross, E. (1990) Chimeric muscarinic cholinergic/β-adrenergic receptors that activate Gs in response to muscarinic agonists. J. Biol. Chem. 265, 6219–6224.Google Scholar
  131. Wu, C. I. and Li, W. H. (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82, 1741–1745.Google Scholar
  132. Yang-Feng, T. L., Xue, F., Zhong, W., Cotecchia, S., Frielle, T., Caron, M. G., Lefkowitz, R. J., and Francke, U. (1990) Chromosomal organization of adrenergic receptor genes. Proc. Natl. Acad. Sci. USA 87, 1516–1520.Google Scholar
  133. Zhou, X. M., and Fishman, P. H. (1991) Desensitization of the human β1-adrenergic receptor. Involvement of the cyclic AMP-dependent but not a receptor-specific kinase. J. Biol. Chem. 266, 7462–7468.Google Scholar
  134. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W., and Wilson, A. C. (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc. Natl. Acad. Sci. USA 77, 2158–2162.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1993

Authors and Affiliations

  1. 1.Institut Alfred FessardC.N.R.S.Gif-sur-Yvette CedexFrance
  2. 2.Laboratoire de Biologie Cellulaire-4, URA D-1134 C.N.R.S., Bat. 444Université Paris XIOrsayFrance

Personalised recommendations