Skip to main content

Molecular studies on insect octopamine receptors

  • Chapter
Comparative Molecular Neurobiology

Part of the book series: EXS ((EXS,volume 63))

Summary

Octopamine receptors are widely distributed in the insect nervous system and carry out a range of functions equivalent to the adrenergic receptors of the vertebrate sympathetic nervous system. Molecular studies on insect octopamine receptors have concentrated upon molecular pharmacological approaches to identify the particular subtype of octopamine receptor mediating its effects in a particular tissue and on the modes of action of the receptors in a particular tissue. Molecular biological approaches are now being pursued to define the structure of the octopamine receptor. Recent findings in this area will be reviewed, along with promising approaches for future molecular studies on insect octopamine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, S., Gocayne, J. D., McCombie, W. R., Urquhart, D. A., Hall, L. M., Fraser, C. M. and Venter, J. C. (1990) Cloning, localization and permanent expression of a Drosophila octopamine receptor. Neuron 2, 343–354.

    Article  Google Scholar 

  • Brown, C. M., McGrath, J. C., Midgley, J. M., Muir, A. G. B., O’Brien J. W., Thonoor, C. M. and Willians, C. M. (1988) Activities of octopamine and synephrine stereoisomers on α-adrenoreceptors. Brit. J. Pharmacol. 93, 417–429.

    Google Scholar 

  • Carlson, A. D. (1968a) Effects of adrenergic drugs on the lantern of the larval Photuris firefly. J. exp. Biol. 48, 381–387.

    Google Scholar 

  • Carlson, A. D. (1968b) Effects of drugs on luminescence in larval fireflies. J. exp. Biol. 49, 195–199.

    Google Scholar 

  • Cheek, T. R., Jackson, T. R., O’Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989) Simultaneous measurements of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of Fura-2 in co-cultured cells. J. Cell Biol. 109, 1219–1227.

    Article  Google Scholar 

  • Corbett, S. A. (1991) A fresh look at the arousal syndrome of insects. Adv. Insect Physiol. 23, 81–116.

    Article  Google Scholar 

  • Cotecchia, S., Kobilka, B. K., Daniel, K. W., Nolan, R. D., Lapetina, E. Y., Caron, M. G., Lefkowitz, R. J. and Regan, J. W. (1990) Multiple second messenger pathways of α-adrenergic receptor subtypes expressed in eukaryotic cells. J. Biol. Chem. 265, 63–69.

    Google Scholar 

  • Davenport, A. P., Morton, D. B. and Evans, P. D. (1985) The action of formamidines on octopamine receptors in the locust. Pest. Biochem. Physiol. 24, 45–52.

    Article  Google Scholar 

  • Downer, R. G. H. (1979a) Trehalose production in isolated fat body of the American cockroach, Periplaneta americana. Comp. Biochem. Physiol. 62C, 31–34.

    Google Scholar 

  • Downer, R. G. H. (1979b) Induction of hypertrehalosemia by excitation in Periplaneta americana. J. Insect Physiol. 25, 59–63.

    Article  Google Scholar 

  • Dudai, Y. (1982) High affinity octopamine receptors revealed in Drosophila by binding of [3H] octopamine. Neurosci. Lett. 28, 163–167.

    Article  Google Scholar 

  • Evans, P. D. (1980) Biogenic amines in the insect nervous system. Adv. Insect Physiol. 15, 317–473.

    Article  Google Scholar 

  • Evans, P. D. (1981) Multiple receptor types for octopamine in the locust. J. Physiol. 318, 99–122.

    Google Scholar 

  • Evans, P. D. (1984a) A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J. Physiol. (Lond.) 348, 307–324.

    Google Scholar 

  • Evans, P. D. (1984b) The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J. Physiol. (Lond.) 348, 325–340.

    Google Scholar 

  • Evans, P. D. (1984c) Studies on the mode of action of octopamine, 5-hydroxytryptamine and proctolin on a myogenic rhythm in the locust. J. exp. Biol. 110, 231–251.

    Google Scholar 

  • Evans, P. D. (1985) Octopamine, in: Comprehensive Insect Biochemistry, Physiology and Pharmacology, pp. 499–530. Eds G. A. Kerkut and L. Gilbert. Pergamon Press, Oxford.

    Google Scholar 

  • Evans, P. D. (1987) Phenyliminoimidazolidine derivatives activate both OCTOPAMINE1, and OCTOPAMINE2 receptor subtypes in locust skeletal muscle. J. exp. Biol. 129, 239–250.

    Google Scholar 

  • Evans, P. D. and Gee, J. D. (1980) Action of formamidine pesticides on octopamine receptors. Nature, Lond. 287, 60–62.

    Article  Google Scholar 

  • Evans, P. D. and Myers, C. M. (1986) Peptidergic and aminergic modulation of insect skeletal muscle. J. exp. Biol. 124, 143–176.

    Google Scholar 

  • Evans, P. D. and O’Shea, M. (1977) An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature, Lond. 270, 257–259.

    Article  Google Scholar 

  • Evans, P. D., Thonoor, C. M. and Midgley, J. M. (1988) Activities of octopamine and synephrine stereoisomers on octopaminergic receptor subtypes in locust skeletal muscle. J. Pharm. Pharmacol. 40, 855–861.

    Article  Google Scholar 

  • GuillĂ©n, A., Haro, A. and Municio, A. M. (1989) A possible new class of octopamine receptors coupled to adenylate cyclase in the brain of the dipterous Ceratitis capitata. Pharmacological characterization and regulation of 3H-octopamine binding. Life Sci. 45, 655–662.

    Article  Google Scholar 

  • Harrison, J. K., Pearson, W. R. and Lynch, K. R. (1991) Molecular characterization of α1 and α2-adrenoceptors. Trends Pharmacol. Sci. 12, 62–67.

    Article  Google Scholar 

  • Jahagirdar, A. P., Milton, G., Viswanatha, T. and Downer, R. G. H. (1987) Calcium involvement in mediating the action of octopamine and hypertrehalosemic peptides on insect haemocytes. FEBS Lett. 219, 83–87.

    Article  Google Scholar 

  • Jordan, R., Midgley, J. M., Thonoor, C. M. and Williams, C. M. (1987) Beta-adrenergic activities of octopamine and synephrine stereoisomers on guinea-pig isolated atria and trachea. J. Pharm. Pharmacol. 39, 752–754.

    Article  Google Scholar 

  • Kaufmann, L. and Benson, J. A. (1991) Characterisation of a locust neuronal octopamine response. Soc. Neurosci. Abstracts 17, 277.

    Google Scholar 

  • Konings, P. N. M., Vullings, H. G. B., Van Gemert, W. M. J. B., DeLeeuw, R., Diederen, J. H. B. and Jansen, W. F. (1989) Octopamine-binding sites in the brain of Locusta migratoria. J. Insect Physiol. 35, 519–524.

    Article  Google Scholar 

  • Lafon-Cazal, M. and Bockaert, J. (1985) Pharmacological characterization of octopamine-sensitive adenylate cyclase in the flight muscle of Locusta migratoria L. European J. Pharmacol. 119, 53–59.

    Article  Google Scholar 

  • Lai, J., Waite, S. L., Bloom, J. W., Yamamura, H. I. and Roeske, W. R. (1991) The m2 muscarinic acetylcholine receptors are coupled to multiple signalling pathways via pertussis toxin-sensitive guanine nucleotide regulatory proteins. J. Pharmacol, exp. Ther. 258, 938–944.

    Google Scholar 

  • Lang, A. B. and Orchard, I. (1986) Identified octopaminergic neurons modulate contractions of locust visceral muscle via adenosine 3′,5′-monophosphate (Cyclic AMP). Brain Res. 363, 340–349.

    Article  Google Scholar 

  • Morton, D. B. (1984) Pharmacology of the octopamine stimulated adenylate cyclase of the locust and tick CNS. Comp. Biochem. Physiol. 78C, 153–158.

    Google Scholar 

  • Nathanson, J. A. (1979) Octopamine receptors, adenosine 3′,5′-monophosphate, and neural control of firefly flashing. Science 203, 65–68.

    Article  Google Scholar 

  • Nathanson, J. A. (1985a) Characterization of octopamine sensitive adenylate cyclase: Elucidation of a class of potent and selective octopamine-2 receptor agonists with toxic effects in insects. Proc. Natl. Acad. Sci. USA 82, 599–603.

    Article  Google Scholar 

  • Nathanson, J. A. (1985b) Phenyliminoimidazolidines: Characterization of a class of potent agonists of octopamine-sensitive adenylate cyclase and their use in understanding the pharmacology of octopamine receptors. Mol. Pharmacol. 28, 254–268.

    Google Scholar 

  • Nathanson, J. A. (1989) Development of a photoaffinity ligand for octopamine receptors. Mol. Pharmacol. 35, 34–43.

    Google Scholar 

  • Nathanson, J. A. and Kaugars, G. (1989) A probe for octopamine receptors: synthesis of 2-[(4-Azido-2,6-diethylphenyl)imino]-imidazolidine and its tritiated derivative, a potent reversible-irreversible activator of octopamine-sensitive adenylate cyclase. J. Med. Chem. 32, 1795–1799.

    Article  Google Scholar 

  • Nathanson, J. A., Kantham, L. and Hunnicutt, E. J. (1989) Isolation and N-terminal amino-acid sequence of an octopamine ligand binding protein. FEBS Lett. 259, 177–120.

    Article  Google Scholar 

  • O’Shea, M. and Evans, P. D. (1979) Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J. exp. Biol. 79, 169–190.

    Google Scholar 

  • Onai, T., FitzGerald, M. G., Arakawa, S., Gocayne, J. D., Urquhart, D. A., Hall, L. M., Fraser, C. M., McCombie, W. R. and Venter, J. C. (1989) Cloning, sequence analysis and chromosome localization of Drosophila muscarinic acetylcholine receptor. FEBS Lett. 255, 219–225.

    Article  Google Scholar 

  • Orchard, I. and Lange, A. B. (1986) Pharmacological profile of octopamine receptors on the lateral oviducts of the locust, Locusta migratoria. J. Insect Physiol. 32, 741–745.

    Article  Google Scholar 

  • Pannabecker, T. and Orchard, I. (1986a) Octopamine and cyclic AMP mediate release of adipokinetic hormone I and II from isolated locust neuroendocrine tissue. Mol. Cell. Endocrinol. 48, 153–159.

    Article  Google Scholar 

  • Pannabecker, T. and Orchard, I. (1986b) Pharmacological properties of octopamine-2 receptors in locust neuroendocrine tissue. J. Insect Physiol. 32, 909–915.

    Article  Google Scholar 

  • Platt, N. and Reynolds, S. E. (1986) The pharmacology of the heart of a caterpillar, the tobacco hornworm, Manduca sexta. J. Insect Physiol. 32, 221–230.

    Article  Google Scholar 

  • Ramirez, J.-M. and Orchard, I. (1990) Octopaminergic modulation of the forewing stretch receptor in the locust, Locusta migratoria. J. exp. Biol. 149, 255–279.

    Google Scholar 

  • Ramirez, J.-M. and Pearson, K. G. (1991) Octopamine induces bursting and plateau potentials in insect neurones. Brain Res. 549, 332–337.

    Article  Google Scholar 

  • Robb, S., Cheek, T. R., Venter, J. C., Midgley, J. M. and Evans, P. D. (1991) The mode of action and pharmacology of a cloned Drosophila phenolamine receptor. Pestic. Sci. 32, 369–371.

    Google Scholar 

  • Robertson, H. A. and Steele, J. E. (1972) Activation of insect nerve cord phosphorylase by octopamine and adenosine 3′,5′-monophosphate. J. Neurochem. 19, 1603–1606.

    Article  Google Scholar 

  • Roeder, T. (1990) High-affinity antagonists of the locust neuronal octopamine receptor. Eur. J. Pharmacol. 191, 221–224.

    Article  Google Scholar 

  • Roeder, T. and Gewecke, M. (1990) Octopamine receptors in locust nervous tissue. Biochem. Pharmacol. 39, 1793–1797.

    Article  Google Scholar 

  • Saudou, F., Amlaiky, N., Plassat, J.-L., Borrelli, E. and Hen, R. (1990) Cloning and characterization of a Drosophila tyramine receptor. EM BO J. 9, 3611–3617.

    Google Scholar 

  • Uzzan, A. and Dudai, Y. (1982) Aminergic receptors in Drosophila melanogaster: responsiveness of adenylate cyclase to putative neurotransmitters. J. Neurochem. 38, 1542–1550.

    Article  Google Scholar 

  • Venter, J. C., DiPorzio, V., Robinson, D. A., Shreeve, S. M., Lai, J., Kerlavage, A. R., Fracek, S. P., Lentes, K.-U. and Fraser, C. M. (1988) Evolution of neurotransmitter receptor systems. Prog. Neurobiol. 30, 105–169.

    Article  Google Scholar 

  • Venter, J. C., Fraser, C. M., Kerlavage, A. R. and Buck, M. A. (1989) Molecular biology of adrenergic and muscarinic cholinergic receptors. A perspective. Biochem. Pharmacol. 38, 1197–1208.

    Article  Google Scholar 

  • Wang, Z., Downer, R. G. H., Gole, J. W. D. and Orr, G. L. (1991) Characterization and pharmacological studies of an octopamine-sensitive adenylate cyclase from nerve cord of Locusta migratoria. Arch. Int. Physiol. Biochim. Biophys. 99, 189–193.

    Article  Google Scholar 

  • Yang, C. M., Chou, S.-P. and Sung, T.-C. (1991) Muscarinic receptor subtypes coupled to generation of different second messengers in isolated tracheal smooth muscle cells. Brit. J. Pharmacol. 104, 613–618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Evans, P.D. (1993). Molecular studies on insect octopamine receptors. In: Pichon, Y. (eds) Comparative Molecular Neurobiology. EXS, vol 63. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7265-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7265-2_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7267-6

  • Online ISBN: 978-3-0348-7265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics