Molecular studies on insect octopamine receptors

Part of the EXS book series (EXS, volume 63)


Octopamine receptors are widely distributed in the insect nervous system and carry out a range of functions equivalent to the adrenergic receptors of the vertebrate sympathetic nervous system. Molecular studies on insect octopamine receptors have concentrated upon molecular pharmacological approaches to identify the particular subtype of octopamine receptor mediating its effects in a particular tissue and on the modes of action of the receptors in a particular tissue. Molecular biological approaches are now being pursued to define the structure of the octopamine receptor. Recent findings in this area will be reviewed, along with promising approaches for future molecular studies on insect octopamine receptors.


Adenylate Cyclase Visceral Muscle Octopamine Receptor Insect Nervous System Future Molecular Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, S., Gocayne, J. D., McCombie, W. R., Urquhart, D. A., Hall, L. M., Fraser, C. M. and Venter, J. C. (1990) Cloning, localization and permanent expression of a Drosophila octopamine receptor. Neuron 2, 343–354.CrossRefGoogle Scholar
  2. Brown, C. M., McGrath, J. C., Midgley, J. M., Muir, A. G. B., O’Brien J. W., Thonoor, C. M. and Willians, C. M. (1988) Activities of octopamine and synephrine stereoisomers on α-adrenoreceptors. Brit. J. Pharmacol. 93, 417–429.Google Scholar
  3. Carlson, A. D. (1968a) Effects of adrenergic drugs on the lantern of the larval Photuris firefly. J. exp. Biol. 48, 381–387.Google Scholar
  4. Carlson, A. D. (1968b) Effects of drugs on luminescence in larval fireflies. J. exp. Biol. 49, 195–199.Google Scholar
  5. Cheek, T. R., Jackson, T. R., O’Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989) Simultaneous measurements of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of Fura-2 in co-cultured cells. J. Cell Biol. 109, 1219–1227.CrossRefGoogle Scholar
  6. Corbett, S. A. (1991) A fresh look at the arousal syndrome of insects. Adv. Insect Physiol. 23, 81–116.CrossRefGoogle Scholar
  7. Cotecchia, S., Kobilka, B. K., Daniel, K. W., Nolan, R. D., Lapetina, E. Y., Caron, M. G., Lefkowitz, R. J. and Regan, J. W. (1990) Multiple second messenger pathways of α-adrenergic receptor subtypes expressed in eukaryotic cells. J. Biol. Chem. 265, 63–69.Google Scholar
  8. Davenport, A. P., Morton, D. B. and Evans, P. D. (1985) The action of formamidines on octopamine receptors in the locust. Pest. Biochem. Physiol. 24, 45–52.CrossRefGoogle Scholar
  9. Downer, R. G. H. (1979a) Trehalose production in isolated fat body of the American cockroach, Periplaneta americana. Comp. Biochem. Physiol. 62C, 31–34.Google Scholar
  10. Downer, R. G. H. (1979b) Induction of hypertrehalosemia by excitation in Periplaneta americana. J. Insect Physiol. 25, 59–63.CrossRefGoogle Scholar
  11. Dudai, Y. (1982) High affinity octopamine receptors revealed in Drosophila by binding of [3H] octopamine. Neurosci. Lett. 28, 163–167.CrossRefGoogle Scholar
  12. Evans, P. D. (1980) Biogenic amines in the insect nervous system. Adv. Insect Physiol. 15, 317–473.CrossRefGoogle Scholar
  13. Evans, P. D. (1981) Multiple receptor types for octopamine in the locust. J. Physiol. 318, 99–122.Google Scholar
  14. Evans, P. D. (1984a) A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J. Physiol. (Lond.) 348, 307–324.Google Scholar
  15. Evans, P. D. (1984b) The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J. Physiol. (Lond.) 348, 325–340.Google Scholar
  16. Evans, P. D. (1984c) Studies on the mode of action of octopamine, 5-hydroxytryptamine and proctolin on a myogenic rhythm in the locust. J. exp. Biol. 110, 231–251.Google Scholar
  17. Evans, P. D. (1985) Octopamine, in: Comprehensive Insect Biochemistry, Physiology and Pharmacology, pp. 499–530. Eds G. A. Kerkut and L. Gilbert. Pergamon Press, Oxford.Google Scholar
  18. Evans, P. D. (1987) Phenyliminoimidazolidine derivatives activate both OCTOPAMINE1, and OCTOPAMINE2 receptor subtypes in locust skeletal muscle. J. exp. Biol. 129, 239–250.Google Scholar
  19. Evans, P. D. and Gee, J. D. (1980) Action of formamidine pesticides on octopamine receptors. Nature, Lond. 287, 60–62.CrossRefGoogle Scholar
  20. Evans, P. D. and Myers, C. M. (1986) Peptidergic and aminergic modulation of insect skeletal muscle. J. exp. Biol. 124, 143–176.Google Scholar
  21. Evans, P. D. and O’Shea, M. (1977) An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature, Lond. 270, 257–259.CrossRefGoogle Scholar
  22. Evans, P. D., Thonoor, C. M. and Midgley, J. M. (1988) Activities of octopamine and synephrine stereoisomers on octopaminergic receptor subtypes in locust skeletal muscle. J. Pharm. Pharmacol. 40, 855–861.CrossRefGoogle Scholar
  23. Guillén, A., Haro, A. and Municio, A. M. (1989) A possible new class of octopamine receptors coupled to adenylate cyclase in the brain of the dipterous Ceratitis capitata. Pharmacological characterization and regulation of 3H-octopamine binding. Life Sci. 45, 655–662.CrossRefGoogle Scholar
  24. Harrison, J. K., Pearson, W. R. and Lynch, K. R. (1991) Molecular characterization of α1 and α2-adrenoceptors. Trends Pharmacol. Sci. 12, 62–67.CrossRefGoogle Scholar
  25. Jahagirdar, A. P., Milton, G., Viswanatha, T. and Downer, R. G. H. (1987) Calcium involvement in mediating the action of octopamine and hypertrehalosemic peptides on insect haemocytes. FEBS Lett. 219, 83–87.CrossRefGoogle Scholar
  26. Jordan, R., Midgley, J. M., Thonoor, C. M. and Williams, C. M. (1987) Beta-adrenergic activities of octopamine and synephrine stereoisomers on guinea-pig isolated atria and trachea. J. Pharm. Pharmacol. 39, 752–754.CrossRefGoogle Scholar
  27. Kaufmann, L. and Benson, J. A. (1991) Characterisation of a locust neuronal octopamine response. Soc. Neurosci. Abstracts 17, 277.Google Scholar
  28. Konings, P. N. M., Vullings, H. G. B., Van Gemert, W. M. J. B., DeLeeuw, R., Diederen, J. H. B. and Jansen, W. F. (1989) Octopamine-binding sites in the brain of Locusta migratoria. J. Insect Physiol. 35, 519–524.CrossRefGoogle Scholar
  29. Lafon-Cazal, M. and Bockaert, J. (1985) Pharmacological characterization of octopamine-sensitive adenylate cyclase in the flight muscle of Locusta migratoria L. European J. Pharmacol. 119, 53–59.CrossRefGoogle Scholar
  30. Lai, J., Waite, S. L., Bloom, J. W., Yamamura, H. I. and Roeske, W. R. (1991) The m2 muscarinic acetylcholine receptors are coupled to multiple signalling pathways via pertussis toxin-sensitive guanine nucleotide regulatory proteins. J. Pharmacol, exp. Ther. 258, 938–944.Google Scholar
  31. Lang, A. B. and Orchard, I. (1986) Identified octopaminergic neurons modulate contractions of locust visceral muscle via adenosine 3′,5′-monophosphate (Cyclic AMP). Brain Res. 363, 340–349.CrossRefGoogle Scholar
  32. Morton, D. B. (1984) Pharmacology of the octopamine stimulated adenylate cyclase of the locust and tick CNS. Comp. Biochem. Physiol. 78C, 153–158.Google Scholar
  33. Nathanson, J. A. (1979) Octopamine receptors, adenosine 3′,5′-monophosphate, and neural control of firefly flashing. Science 203, 65–68.CrossRefGoogle Scholar
  34. Nathanson, J. A. (1985a) Characterization of octopamine sensitive adenylate cyclase: Elucidation of a class of potent and selective octopamine-2 receptor agonists with toxic effects in insects. Proc. Natl. Acad. Sci. USA 82, 599–603.CrossRefGoogle Scholar
  35. Nathanson, J. A. (1985b) Phenyliminoimidazolidines: Characterization of a class of potent agonists of octopamine-sensitive adenylate cyclase and their use in understanding the pharmacology of octopamine receptors. Mol. Pharmacol. 28, 254–268.Google Scholar
  36. Nathanson, J. A. (1989) Development of a photoaffinity ligand for octopamine receptors. Mol. Pharmacol. 35, 34–43.Google Scholar
  37. Nathanson, J. A. and Kaugars, G. (1989) A probe for octopamine receptors: synthesis of 2-[(4-Azido-2,6-diethylphenyl)imino]-imidazolidine and its tritiated derivative, a potent reversible-irreversible activator of octopamine-sensitive adenylate cyclase. J. Med. Chem. 32, 1795–1799.CrossRefGoogle Scholar
  38. Nathanson, J. A., Kantham, L. and Hunnicutt, E. J. (1989) Isolation and N-terminal amino-acid sequence of an octopamine ligand binding protein. FEBS Lett. 259, 177–120.CrossRefGoogle Scholar
  39. O’Shea, M. and Evans, P. D. (1979) Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J. exp. Biol. 79, 169–190.Google Scholar
  40. Onai, T., FitzGerald, M. G., Arakawa, S., Gocayne, J. D., Urquhart, D. A., Hall, L. M., Fraser, C. M., McCombie, W. R. and Venter, J. C. (1989) Cloning, sequence analysis and chromosome localization of Drosophila muscarinic acetylcholine receptor. FEBS Lett. 255, 219–225.CrossRefGoogle Scholar
  41. Orchard, I. and Lange, A. B. (1986) Pharmacological profile of octopamine receptors on the lateral oviducts of the locust, Locusta migratoria. J. Insect Physiol. 32, 741–745.CrossRefGoogle Scholar
  42. Pannabecker, T. and Orchard, I. (1986a) Octopamine and cyclic AMP mediate release of adipokinetic hormone I and II from isolated locust neuroendocrine tissue. Mol. Cell. Endocrinol. 48, 153–159.CrossRefGoogle Scholar
  43. Pannabecker, T. and Orchard, I. (1986b) Pharmacological properties of octopamine-2 receptors in locust neuroendocrine tissue. J. Insect Physiol. 32, 909–915.CrossRefGoogle Scholar
  44. Platt, N. and Reynolds, S. E. (1986) The pharmacology of the heart of a caterpillar, the tobacco hornworm, Manduca sexta. J. Insect Physiol. 32, 221–230.CrossRefGoogle Scholar
  45. Ramirez, J.-M. and Orchard, I. (1990) Octopaminergic modulation of the forewing stretch receptor in the locust, Locusta migratoria. J. exp. Biol. 149, 255–279.Google Scholar
  46. Ramirez, J.-M. and Pearson, K. G. (1991) Octopamine induces bursting and plateau potentials in insect neurones. Brain Res. 549, 332–337.CrossRefGoogle Scholar
  47. Robb, S., Cheek, T. R., Venter, J. C., Midgley, J. M. and Evans, P. D. (1991) The mode of action and pharmacology of a cloned Drosophila phenolamine receptor. Pestic. Sci. 32, 369–371.Google Scholar
  48. Robertson, H. A. and Steele, J. E. (1972) Activation of insect nerve cord phosphorylase by octopamine and adenosine 3′,5′-monophosphate. J. Neurochem. 19, 1603–1606.CrossRefGoogle Scholar
  49. Roeder, T. (1990) High-affinity antagonists of the locust neuronal octopamine receptor. Eur. J. Pharmacol. 191, 221–224.CrossRefGoogle Scholar
  50. Roeder, T. and Gewecke, M. (1990) Octopamine receptors in locust nervous tissue. Biochem. Pharmacol. 39, 1793–1797.CrossRefGoogle Scholar
  51. Saudou, F., Amlaiky, N., Plassat, J.-L., Borrelli, E. and Hen, R. (1990) Cloning and characterization of a Drosophila tyramine receptor. EM BO J. 9, 3611–3617.Google Scholar
  52. Uzzan, A. and Dudai, Y. (1982) Aminergic receptors in Drosophila melanogaster: responsiveness of adenylate cyclase to putative neurotransmitters. J. Neurochem. 38, 1542–1550.CrossRefGoogle Scholar
  53. Venter, J. C., DiPorzio, V., Robinson, D. A., Shreeve, S. M., Lai, J., Kerlavage, A. R., Fracek, S. P., Lentes, K.-U. and Fraser, C. M. (1988) Evolution of neurotransmitter receptor systems. Prog. Neurobiol. 30, 105–169.CrossRefGoogle Scholar
  54. Venter, J. C., Fraser, C. M., Kerlavage, A. R. and Buck, M. A. (1989) Molecular biology of adrenergic and muscarinic cholinergic receptors. A perspective. Biochem. Pharmacol. 38, 1197–1208.CrossRefGoogle Scholar
  55. Wang, Z., Downer, R. G. H., Gole, J. W. D. and Orr, G. L. (1991) Characterization and pharmacological studies of an octopamine-sensitive adenylate cyclase from nerve cord of Locusta migratoria. Arch. Int. Physiol. Biochim. Biophys. 99, 189–193.CrossRefGoogle Scholar
  56. Yang, C. M., Chou, S.-P. and Sung, T.-C. (1991) Muscarinic receptor subtypes coupled to generation of different second messengers in isolated tracheal smooth muscle cells. Brit. J. Pharmacol. 104, 613–618.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1993

Authors and Affiliations

  1. 1.AFRC Laboratory of Molecular Signalling, Department of ZoologyUniversity of CambridgeCambridgeEngland

Personalised recommendations