Molecular analysis of Drosophila glutamate receptors

Part of the EXS book series (EXS, volume 63)


Insects and other invertebrates use L-glutamate as a neurotransmitter in the central nervous system and at the neuromuscular junction. In contrast to the well-studied effects of L-glutamate on invertebrate muscle cells, relatively little is known about the physiological role of glutamate receptors (GluRs) in the invertebrate central nervous system. We have applied a molecular cloning approach to elucidate the molecular structure of neuronal and muscle-specific Drosophila glutamate receptor subunits (DGluRs). Several domains conserved between rat GluR subunits and DGluRs indicate regions of high functional significance. Drosophila genetics may now be used as a valuable experimental tool to gain further insight into the role of DGluRs in development, synaptic plasticity and control of gene expression.


Glutamate Receptor Neuromuscular Junction Xenopus Oocyte Larval Muscle Glutamate Receptor Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnard, E., Darlison, M. G. and Seeburg, P. H. (1987) Molecular biology of the GABAA receptor: The receptor/channel superfamily. Trends Neurosci. 10, 502.CrossRefGoogle Scholar
  2. Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O’Shea-Greenfield, A., Deneris, E. S., Moll, C., Borgmeyer, U., Hollmann, M. and Heinemann, S. (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583.CrossRefGoogle Scholar
  3. Betz, H. (1990) Ligand-gated ion channels in the brain: The amino acid receptor superfamily. Neuron 5, 383.CrossRefGoogle Scholar
  4. Bicker, G., Schäfer, S., Ottersen, O. P. and Storm-Mathisen, J. (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J. Neurosci. 8, 2108.Google Scholar
  5. Chase, B. A. and Kankel, D. R. (1987) A genetic analysis of glutamatergic function in Drosophila. J. Neurobiol. 18, 15.CrossRefGoogle Scholar
  6. Chen, J. W., Cunningham, M. D., Galtons, N. and Michaelis, E. K. (1988) Immune labelling and purification of a 71 kD glutamate binding protein from rat brain. J. Biol. Chem. 263, 417.Google Scholar
  7. Chen, P. S., Kubli, E. and Manimann, F. (1968) Auftrennung der freien Ninhydrin-positiven Stoffe IS Phormia und Drosophila mittels zweidimensionaler Hochspannungselektrophorese. Rev. Suisse Zool. 75, 509.Google Scholar
  8. Choi, D. W. and Rothman, S. M. (1990) The role of glutamate neurotoxicity in hypoxicischemic neuronal death. Ann. Rev. Neurosci. 13, 171.CrossRefGoogle Scholar
  9. Cull-Candy, S. G. (1978) Glutamate sensitivity and distribution of receptors along normal and denervated locust muscle fibres. J. Physiol. 276, 165.Google Scholar
  10. Delgado, R., Barla, R., Latorre, R. and Labarca, P. (1989) L-glutamate activates excitatory and inhibitory channels in Drosophila larval muscle. FEBS Lett. 243, 337.CrossRefGoogle Scholar
  11. Duce, I. R., Donaldson, P. L. and Usherwood, P. N. R. (1983) Investigations into the mechanism of excitant amino acid cytotoxicity using a well-characterized glutamatergic system. Brain Res. 263, 77.CrossRefGoogle Scholar
  12. Dudel, J., Franke, C., Hatt, H., Ramsey, R. L. and Usherwood, P. N. R. (1988) Rapid activation and desensitization by glutamate of excitatory, cation-selective channels in locust muscle. Neurosci. Lett. 88, 33.CrossRefGoogle Scholar
  13. Eldefrawi, A. T., Eldefrawi, M. E., Konno, K., Mansour, N. A., Nakanishi, K., Oltz, E. and Usherwood, P. N. R. (1988) Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc. Natl. Acad. Sci. USA 85, 4910.CrossRefGoogle Scholar
  14. Fraser, S. P., Djamgoz, M. B. A., Usherwood, P. N. R., O’Brien, J., Darlison, M. G. and Barnard, E. A. (1990) Amino acid receptors from insect muscle: electrophysiological characterization in Xenopus oocytes following expression by injection of mRNA. Mol. Brain Res. 8, 331.CrossRefGoogle Scholar
  15. Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R. and Engels, W. R. (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110.CrossRefGoogle Scholar
  16. Gration, K. A. F., Clark, R. B. and Usherwood, P. N. R. (1979) Three types of L-glutamate receptor on junctional membrane of locust muscle fibres. Brain Res. 171, 360.CrossRefGoogle Scholar
  17. Gregor, P., Mano, I., McKeown, N. and Teichberg, V. (1989) Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342, 689.CrossRefGoogle Scholar
  18. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfingen E. D. and Betz, H. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215.CrossRefGoogle Scholar
  19. Hampson, D. R., Huie, D. and Wenthold, R. J. (1987) Solubilization of kainic acid binding sites from rat brain. J. Neurochem. 49, 1209.CrossRefGoogle Scholar
  20. Hayashi, T. (1954) Effects of sodium glutamate on the nervous system. Keio J. Med. 3, 183.CrossRefGoogle Scholar
  21. Hollmann, M., O’Shea-Greenfield, A., Rogers, S. and Heinemann, S. (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643.CrossRefGoogle Scholar
  22. Hollmann, M., Rogers, S. W., O’Shea-Greenfield, A., Deneris, E. S., Hughes, T. E., Gasic, G. P. and Heinemann, S. (1990) Glutamate receptor GluR-Kl: structure, function and expression in the brain. Cold Spring Harbour Symposia on Quantitative Biology, vol. LV, “The Brain”, pp. 41.Google Scholar
  23. Horseman, B. G., Seymour, C., Bermudez, I. and Beadle, D. J. (1988) The effects of L-glutamate on cultured insect neurons. Neurosci. Lett. 85, 65.CrossRefGoogle Scholar
  24. Hume, R. I., Dingledine, R. and Heinemann, S. F. (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028.CrossRefGoogle Scholar
  25. Jan, Y. N. and Jan, L. Y. (1976) Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. (London) 262, 189.Google Scholar
  26. Keinänen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B. and Seeburg, P. H. (1990) A family of AMPA-selective glutamate receptors. Science 249, 556.CrossRefGoogle Scholar
  27. Kerry, C. J., Ramsey, R. L., Sansom, M. S. P. and Usherwood, P. N. R. (1988) Single channel studies of non-competitive antagonism of a quisqualate-sensitive glutamate receptor by argiotoxin636 — a fraction isolated from orb-web spider venom. Brain Res. 459, 312.CrossRefGoogle Scholar
  28. Melbrum, B. and Garthwaite, J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379.CrossRefGoogle Scholar
  29. Monaghan, D. T., Bridges, R. J. and Cotman, C. W. (1989) Ann. Rev. Pharmacol. Toxicol. 29, 365.CrossRefGoogle Scholar
  30. Morris, R. G. M., Davis, S. and Butcher, S. P. (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos. Trans. R. Soc. Lond. 329, 187.CrossRefGoogle Scholar
  31. Nässel, D. R. (1991) Neurotransmitters and neuromodulators in the insect visual system. Prog. Neurobiol. 37, 179.CrossRefGoogle Scholar
  32. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793.CrossRefGoogle Scholar
  33. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487.CrossRefGoogle Scholar
  34. Saito, M., Ohsako, S., Deguchi, T. and Kawai, N. (1987) Glutamate receptors expressed in Xenopus oocytes by messenger RNA from invertebrate muscle. Mol. Brain Res. 3, 83.CrossRefGoogle Scholar
  35. Schmieden, V., Grenningloh, G., Schofield, P. R. and Betz, H. (1989) EM BO J. 8, 695.Google Scholar
  36. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H. and Barnard, E. A. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily. Nature 328, 221.CrossRefGoogle Scholar
  37. Schuster, C. M., Ultsch, A., Schloss, P., Cox, J. A., Schmitt, B. and Betz, H. (1991) Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 259, 112–114.CrossRefGoogle Scholar
  38. Tautz, D. and Pfeifle, C. (1989) Chromosoma 98, 81.CrossRefGoogle Scholar
  39. Ultsch, A., Schuster, C. M., Schloss, P., Schmitt, B. and Betz, H. (1992) Glutamate receptors of Drosophila melanogaster: Cloning of a Kainate-selective subunit expressed in the central nervous system. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  40. Wada, K., Dechesne, C. J., Shimasaki, S., King, R. G., Kusano, K., Buonanno, A., Hampson, D. R., Banner, C. and Wenthold, R. J. (1989) Nature 342, 684.CrossRefGoogle Scholar
  41. Wafford, K. A. and Sattelle, D. B. (1986) Effects of amino acid neurotransmitter candidates on an identified insect motoneuron. Neurosci. Lett. 63, 135.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1993

Authors and Affiliations

  1. 1.Abteilung NeurochemieMax-Planck-Institut für HirnforschungFrankfurt 71Federal Republic of Germany

Personalised recommendations