Molecular biology of excitatory amino acid receptors: Subtypes and subunits

Part of the EXS book series (EXS, volume 63)


Glutamate receptors coupled to ion channels have been named according to their selective agonist: N-methyl-D-Aspartate (NMDA), kainate, quisqualate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA). The pharmacology of the NMDA receptor is clearly different from that of the kainate, quisqualate and AMPA receptors, thus differentiating two types: NMDA and non-NMDA receptors. Molecular cloning and expression of non-NMDA receptor subunits have now established that the different neuronal responses to kainate, quisqualate and AMPA are mediated by at least two subtypes of ligand-gated channels: one responding to the three ligands, the other responding to kainate and quisqualate but not to AMPA.


Glutamate Receptor Transmembrane Domain AMPA Receptor Receptor Subunit Kainate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



α amino-3-hydroxy-5-methyl-4-isoxazolepropionate








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bairoch, A. (1990) PROSITE: a Dictionary of Protein Sites and Patterns, University of Geneva, Fifth release.Google Scholar
  2. Bettler, B., Boulter, J., Hermans-Borgmeyer, I. O’Shea-Greenfield, A., Deneris, E. S., Moll, C., Borgmeyer, U., Hollman, M. and Heinemann, S. (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583–595.CrossRefGoogle Scholar
  3. Bochet, P., Dutriaux, A., Lambolez, B., Nalivaiko, E., Rossier, J. and Prado de Carvalho, L. (1991) A chimeric glutamate receptor subunit: discrete changes modify the properties of the channel. Biochem. Biophys. Res. Comm. 177, 1183–1187.CrossRefGoogle Scholar
  4. Boulter, J., Hollmann, M., O’Shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C. and Heinemann, S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033–1037.CrossRefGoogle Scholar
  5. Collingridge, G. (1987) The role of NMDA receptors in learning and memory. Nature 330, 604–605.CrossRefGoogle Scholar
  6. Couturier, S., Bertrand, D., Matter, J. M., Hernandez, M. C., Bertrand, S., Miller, N., Valera, S., Barkas, T. and Ballivet, M. A. (1990) Neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 5, 847–856.CrossRefGoogle Scholar
  7. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. and Heinemann, S. (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745–748.CrossRefGoogle Scholar
  8. Gregor, P., Mano, I., Maoz, I., McKeown, M. and Teichberg, V. I. (1989) Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342.Google Scholar
  9. Hollmann, M., O’Shea-Greenfield, A., Rogers, S. W. and Heinemann, S. (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643–648.CrossRefGoogle Scholar
  10. Hollmann, M., Hartley, M. and Heinemann, S. (1991) Calcium permeability of KA-AMPA-gated receptor channels: dependence of subunit composition. Science 252, 851–853.CrossRefGoogle Scholar
  11. Huettner, J. E. (1990) Glutamate receptor channels in rat DRG neurones: Activation by kainate and quisqualate and blockade of densensitization by Con A. Neuron 5, 255–266.CrossRefGoogle Scholar
  12. Hutton, M. L., Harvey, R. J., Barnard, E. A. and Darlison, M. G. (1991) Cloning of a cDNA that encodes an invertebrate glutamate receptor subunit. FEBS Lett. 292, 111–114.CrossRefGoogle Scholar
  13. Keinänen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B. and Seeburg, P. H. (1990) A family of AMPA-selective glutamate receptors. Science 249, 556–560.CrossRefGoogle Scholar
  14. Lambolez, B., Curutchet, P., Stinnakre, J., Bregestovski, P., Rossier, J. and Prado de Carvalho, L. (1991) Electrophysiological and pharmacological properties of GluRl, a subunit of a glutamate receptor-channel expressed in Xenopus oocytes. Neurosci. Lett. 118, 69–72.CrossRefGoogle Scholar
  15. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R. and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.CrossRefGoogle Scholar
  16. Mayer, M. L. and Vyklicky, L., Jr. (1989) Concanavalin A selectively reduces densensitization of mammalian neuronal quisqualate receptors. Proc. Natl. Acad. Sci. USA 86, 1411–1415.CrossRefGoogle Scholar
  17. Nakanishi, N., Shneider, N. A. and Axel, R. (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569–581.CrossRefGoogle Scholar
  18. Sakimura, K., Bujo, H., Kushiya, E., Araki, K., Yamazaki, M., Yamazaki, M., Meguro, H., Warashina, A., Numa, S. and Mishina, M. (1990) Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate. FEBS Lett. 272, 73–80.CrossRefGoogle Scholar
  19. Schuster, C. M., Ultsch, A., Schloss, P., Cox, J. A., Schmitt, B. and Betz, H. (1991) Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila Muscle. Science 254, 112–114.CrossRefGoogle Scholar
  20. Shen, Q., Simplaceanu, V., Cottam, P. F., Wu, J. L., Hong, J. S. and Ho, C. (1989) Molecular genetic, biochemical and nuclear magnetic resonance studies on the role of the tryptophan residues of glutamine-binding protein from Escherichia coli. J. Mol. Biol. 210, 859–867.Google Scholar
  21. Sommer, B., Keinänen, K., Verdoorn, T. A., Wisden, W., Burnashev, N., Herb, A., Kohler, M., Takagi, T., Sakmann, B. and Seeburg, P. H. (1990) Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585.CrossRefGoogle Scholar
  22. Unwin, N. (1989) The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676.CrossRefGoogle Scholar
  23. von Heijne, G. (1987) Sequence Analysis in Molecular Biology. Treasure Trove or Trivial Pursuit, p. 109. Academic Press, San Diego, USA.Google Scholar
  24. Wada, K., Dechesne, C. J., Shimasaki, S., King, R. G., Kusano, K., Buonanno, A., Hampson, D. R., Banner, C., Wenthold, R. J. and Nakatani, Y. (1989) Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342, 684–689.CrossRefGoogle Scholar
  25. Werner, P., Voigt, M., Keinänen, K., Wisden, W. and Seeburg, P. H. (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351, 742–744.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1993

Authors and Affiliations

  1. 1.Institut Alfred FessardCentre National de la Recherche ScientifiqueGif-sur-Yvette CedexFrance

Personalised recommendations