Skip to main content

Summary

A number of 5-HT actions where the mechanism is one of opening an ion channel, resulting in a fast depolarization, a slow depolarization or a hyperpolarization are compared with actions where the mechanism is a closure of ion channels, resulting in a slow depolarization, altered transmitter release or altered membrane accommodation. The relationship of these mechanisms to a particular receptor subtype and to a particular second messenger system is likely to become apparent in the near future. At present, the extent to which differentiation of an electrophysiological action of 5-HT in terms of mechanism is predictive of involvement of a particular 5-HT receptor is unclear. Evidence from the nervous system suggests that a particular mechanism is usually associated with a certain sub-type of 5-HT receptor and, thus, classification by function provides a useful initial framework provided it does not become a dogma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas, P. (1983). Serotonin-induced release of acetylcholine from neurones in the bronchial smooth muscle of the rat. Acta Physiological Scandinavica 117: 477–480.

    Article  Google Scholar 

  • Andrade, R., Malenka, R. C., and Nicoll, R. A. (1986). A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234: 1261–1265.

    Article  Google Scholar 

  • Barnes, J. M., Barnes, N. M., Costal], B., Naylor, R. J., and Tyers, M. B. (1989). 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 338: 762–763.

    Article  Google Scholar 

  • Blandina, P., Goldfarb, J. and Green, J. P., (1990). The continuing story of 5-hydroxytryptamine receptors: A 5-HT3 receptor modulates dopamine release from rat striatal slice. In: Saxena, P. R., Wallis, D. I., Wouters, W., and Bevan, P. (eds.), Cardiovascular pharmacology of 5-hydroxytryptamine. Dordrecht, Kluwer, pp. 117–126.

    Google Scholar 

  • Bobker, D. H., and Williams, J. T. (1989). Serotonin augments the cationic current Ih in central neurons. Neuron. 2: 1535–1540.

    Article  Google Scholar 

  • Crick, H., and Wallis, D. I. (1990). Effect of 5-HT on reflex responses of neonate rat spinal motoneurones. Br. J. Pharmac. 100: 308.

    Google Scholar 

  • Colino, A., and Halliwell, J. A. (1987). Differential modulation of three separate K-conductances in hippocampal CA1 neurones by serotonin. Nature 328: 73–77.

    Article  Google Scholar 

  • Derkach, V., Surprenant, A., and North, R. A. (1989). 5-HT3 receptors are membrane ion channels. Nature 339: 706–709.

    Article  Google Scholar 

  • Dun, N. J., and Karczmar, A. G. (1981). Evidence for a presynaptic inhibitory action of 5-hydroxytryptamine in a mammalian sympathetic ganglion. J. Pharmacol. Exp. Ther. 217: 714–718.

    Google Scholar 

  • Elliott, P., and Wallis, D. I. (1988). The depolarizing action of 5-hydroxytryptamine on rabbit isolated, preganglionic cervical sympathetic nerves. Naunyn-Schmeideberg’s Arch. Pharmacol. 338: 608–615.

    Article  Google Scholar 

  • Elliott, P., and Wallis, D. I. (1990a). Analysis of the actions of 5-hydroxytryptamine on the rabbit isolated vagus nerve. Naunyn-Schmeideberg’s Arch. Pharmacol. 341: 494–502.

    Google Scholar 

  • Elliott, P., and Wallis, D. I. (1990b). The action of 5-hydroxytryptamine on lumbar motoneurones in neonatal rat spinal cord in vitro. J. Physiol. 426: 54.

    Google Scholar 

  • Elliott, P., Seemungal, B. M., and Wallis, D. I. (1990). Antagonism of the effects of 5-HT on the rabbit isolated vagus nerve by BRL 43694 and metoclopramide. Naunyn-Schmeideberg’s Arch. Pharmacol. 341: 503–509.

    Google Scholar 

  • Fozard, J. R., and Mwaluko, G. M. P. (1976). Mechanism of the indirect sympathomimetic effect of 5-hydroxytryptamine on the isolated heart of the rabbit. Brit. J. Pharmacol. 57: 115–125.

    Google Scholar 

  • Gerschenfeld, H. M., and Paupardin-Tritsch, D. (1974a). Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine. J. Physiol. 243: 427–456.

    Google Scholar 

  • Gerschenfeld, H. M., and Paupardin-Tritsch, D. (1974b). On the transmitter function of 5-hydroxytryptamine at excitatory and inhibitory monosynaptic junctions. J. Physiol. 243: 457–481.

    Google Scholar 

  • Halliwell, J. A., and Colino, A. (1990). Control of hippocampal pyramidal cell excitability by 5-HT. Neurosci. Letts. 38: S116.

    Google Scholar 

  • Higashi, S., and Nishi, S. (1982). 5-hydroxytryptamine receptors of visceral primary afferent neurones in rabbit nodose ganglia. J. Physiol. 323: 543–567.

    Google Scholar 

  • Kelly, J. S., and Penington, N. J. (1989). 5-hydroxytryptamine inhibits the voltage-dependent calcium current of acutely dissociated central neurones from the adult rat dorsal raphe nucleus. J. Physiol. 418: 35.

    Google Scholar 

  • Lambert, J. J., Peters, J. A., Hales, T. G., and Dempster, J. (1989). The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br. J. Pharmacol. 97: 27–40.

    Google Scholar 

  • Larkman, P. M., and Kelly, J. S. (1988). The effects of serotonin (5-HT) and antagonists on rat facial motoneurones in the in vitro brainstem slice. J. Neurosci. Methods 24: 199.

    Google Scholar 

  • Malone, H. M., Callachan, H., Lambert, J. J., and Peters, J. A. (1990) The effects of 5-hydroxytryptamine on adult rabbit nodose ganglion neurones in cell culture. Neurosci. Letts. 38: 5116.

    Google Scholar 

  • Marsh, S. J., Stansfeld, C. E., Brown, D. A., Davey, R., and McCarthy, D. (1987). The mechanism of action of capsaicin on sensory C-type neurones and their axons in vitro. Neuroscience 23: 257–289.

    Article  Google Scholar 

  • McQueen, D. S. (1990). Cardiovascular reflexes and 5-hydroxytryptamine. In: Saxena, P. R., Wallis, D. I., Wouters, W., and Bevan, P. (eds.), Cardiovascular pharmacology of 5-hydroxytryptamine. Dordrecht, Kluwer, pp. 233–245.

    Google Scholar 

  • Neijt, H. C., Te Duits, I. J., and Vijverberg, H. P. M. (1988). Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology 27: 301–307.

    Article  Google Scholar 

  • Neijt, H. C., Plomp, J. J., and Vijverberg, H. P. M. (1989). Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells. J. Physiol. 41 1: 257–269.

    Google Scholar 

  • North, R. A., and Uchimura, N. (1989). 5-hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. J. Physiol. 417: 1–12.

    Google Scholar 

  • Paintal, A. S. (1954). The response of gastric stretch receptors and certain other abdominal and thoracic vagal receptors to some drugs. J. Physiol. 126: 271–285.

    Google Scholar 

  • Pape, H. C., and McCormick, D. A. (1989). Noradrenaline and serotonin selectivity modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340: 715–718.

    Article  Google Scholar 

  • Round, A. A., and Wallis, D. I. (1987). Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Neuropharmacology 26: 39–48.

    Article  Google Scholar 

  • Surprenant, A. (1990). Whole cells and single channel current produced by activation of 5-HT3 receptors in enteric neurones. Neurosci. Letts. 38: 5115.

    Google Scholar 

  • Takahashi, T., and Berger, A. J. (1990). Direct excitation of rat spinal motoneurones by serotonin. J. Physiol. 423: 63–76.

    Google Scholar 

  • Takeuchi, A., and Takeuchi, N. (1960). On the permeability of end-plate membrane during the action of transmitter. J. Physiol. 154: 52–67.

    Google Scholar 

  • Vandermaelen, C. P., and Aghajanian, G. K. (1980). Intracellular studies showing modulation of facial motoneurone excitability by serotonin. Nature 287: 346–347.

    Article  Google Scholar 

  • Wallis, D. I., and Dun, N. J. (1987). Fast and slow depolarizing responses of guinea-pig coeliac ganglion cells to 5-hydroxytryptamine. J. Aut. Nerv. System. 21: 185–194.

    Google Scholar 

  • Wallis, D. I., and Elliott, P. (1990). 5-HT and related drugs and autonomic ganglia. In: Saxena, P. R., Wallis, D. I., Wouters, W., and Bevan, P. (eds). Cardiovascular pharmacology of 5-HT: prospective therapeutic applications. Dordrecht, Kluwer, pp. 177–190.

    Google Scholar 

  • Wallis, D. I., and North, R. A. (1978). The action of 5-hydroxytryptamine on single neurones of the rabbit superior cervical ganglion. Neuropharmacology 17: 1023–1028.

    Article  Google Scholar 

  • Wallis, D. I., Lees, G. M., and Kosterlitz, H. W. (1975). Recording resting and action potentials by the sucrose-gap method. Comp. Biochem. Physiol. 50C: 199–216.

    Google Scholar 

  • Wallis, D. I., Stansfeld, C. E., and Nash, H. L. (1982). Depolarizing responses recorded from nodose ganglion cells of the rabbit evoked by 5-hydroxytryptamine and other substances. Neuropharmacology 21: 31–40.

    Article  Google Scholar 

  • Wallis, D. I., and Woodward, B. (1974). The facilitatory actions of 5-hydroxytryptamine and bradykinin in the superior cervical ganglion of the rabbit. Br. J. Pharmac. 51: 521–532.

    Google Scholar 

  • Wallis, D. I., and Woodward, B. (1975). Membrane potential changes induced by 5-hydroxytryptamine in the rabbit superior cervical ganglion. Br. J. Pharmac. 55: 199–212.

    Google Scholar 

  • Yakel, J. L., Trussell, L. O., and Jackson, M. B. (1988). Three serotonin responses in cultured mouse hippocampal and striatal neurons. J. Neurosci. 8: 1273–1285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Wallis, D.I., Elliott, P. (1991). The Electrophysiology of 5-HT. In: Fozard, J.R., Saxena, P.R. (eds) Serotonin: Molecular Biology, Receptors and Functional Effects. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7259-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7259-1_19

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7261-4

  • Online ISBN: 978-3-0348-7259-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics