Skip to main content

Summary

Radioligand binding studies have been instrumental in the discovery of 5-HT receptor subtypes, but have clear limitations. By contrast, second messenger studies are elegant tools, although somewhat overlooked for classifying functional receptors. In the particular case of 5-HT1 receptor subtypes, few “classical” isolated tissue preparations have been described, whereas second messenger systems are available. 5-HT1A, 5-HT1B and 5-HT1D receptors are negatively coupled to adenylate cyclase, whereas 5-HT1C, receptors (like 5-HT2 receptors) stimulate phospholipase C. The rank orders of potency of agonists and antagonists established in second messenger studies correlated significantly with rank orders of affinity determined in specific radioligand binding assays. Subsequently, a variety of functional 5-HT1C receptor subtypes-mediated effects have been described in both the CNS and periphery. The profile established for 5-HT1C receptor-mediated stimulation of phospholipase C will be especially useful in the definition of functional 5-HT1C receptors, although 5-HT1C and 5-HT2 receptors have similar pharmacological profiles and second messenger systems. 5-HT3 receptors form ligand gated channels and thus, do not directly activate second messenger systems. Even more interesting is the case of the 5-HT4 receptor which stimulates adenylate cyclase in colicullus cell cultures, and for which no binding site has been as yet described. Second messenger studies have permitted the identification of similar functional receptors in various peripheral models, and have contributed significantly to the definition of new functional 5-HT receptor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananth, U.S., Leli, U., and Hauser, G. (1987). Stimulation of phosphoinositide hydrolysis by serotonin in C6 glioma cells. J. Neurochem. 48: 253–261.

    Article  Google Scholar 

  • Barnes, N. M., Costall, B., and Naylor, R. J. (1988). [3H]Zacopride: Ligand for identification of 5-HT3 recognition sites. J. Pharm. Pharmacol. 40: 548–551.

    Article  Google Scholar 

  • Baxter, G. S., and Clarke, D. E. (1990). Putative 5-HT4 receptors mediate relaxation of rat oesophagus. The Second IUPHAR Satellite Meeting on Serotonin, Basel July 11–13, 1990. Abstr. 85: 78.

    Google Scholar 

  • Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M., and Cory, R. N. (1987). Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT,A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeberg’s Arch. Pharmacol. 335: 588–592.

    Article  Google Scholar 

  • Bockaert, J., Nelson, D. L., Herbet, A., Adrien, J., Enjalbert, A., and Hamon, M. (1981). Serotonin receptors coupled with an adenylate cyclase in the rat brain: non identity with [3H]-5-HT binding sites. Adv. Exp. Med. Biol. 133: 327–345.

    Google Scholar 

  • Bockaert, J., Sebben, M., and Dumuis, A. (1990). Pharmacological characterization of 5-hydroxytryptamine-4 (5-HT4) receptors positively coupled to adenylate cyclase in adult guinea-pig hippocampal membranes effect of substituted benzamide derivatives. Mol. Pharmacol. 37: 408–411.

    Google Scholar 

  • Bom, A. H., Duncker, D. J., Saxena, P. R., and Verdouw, P. D. (1988). 5-Hydroxytryptamine-induced tachycardia in the pig: possible involvement of a new type of 5hydroxytryptamine receptor. Br. J. Pharmacol. 93: 663–671.

    Google Scholar 

  • Bouhelal, R., Smounya, L., and Bockaert, J. (1988). 5-HT1n receptors are negatively coupled with adenylate cyclase in rate substantia nigra. Eur. J. Pharmacol. 151: 189–196.

    Article  Google Scholar 

  • Bradley, P. B., Engel, G., Fenuik, W., Fozard, J. R., Humphrey, P. P. A., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P., and Saxena, P. R. (1986). Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol. 25: 563–576.

    Article  Google Scholar 

  • Branchek, R. L., Adham, N., Macchi, M. J., Kao, H. T., and Hartig, P. R. (1990). [3H]-DOB (4-bromo-2,5-dimethoxyphenyliopropylamine) and [3H]ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor. Mol. Pharmacol. 38: 604–609.

    Google Scholar 

  • Clarke, D. E., Craig, D. A., and Fozard, J. R. (1989), The 5-HT4 receptor: naughty but nice. TiPS. 10: 385–386.

    Google Scholar 

  • Conn, P. J., and Sanders-Bush, E. (1984). Selective 5-HT antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacol. 8: 993–996.

    Article  Google Scholar 

  • Conn, P. J., and Sanders-Bush, E. (1985). Serotonin stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 234: 195–203.

    Google Scholar 

  • Conn, P. J., and Sanders-Bush, E. (1986). Agonist-induced phosphoinositide hydrolysis in choroid plexus. J. Neurochem. 47: 1754–1760.

    Article  Google Scholar 

  • Conn, P. J., Sanders-Bush, E., Hoffman, B. J., and Hartig, P. R. (1986). A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc. Natl. Acad. Sci. USA 83: 4086–4088.

    Article  Google Scholar 

  • Cory, R. N., Berta, P., Haiech, J., and Bockaert, J. (1986). 5-HT, receptor-stimulated inositol phosphate formation in rat aortic myocytes. Eur. J. Pharmacol. 131: 153–157.

    Article  Google Scholar 

  • Craig, D. A., and Clarke, D. E. (1990). Pharmacological characterization of a neuronal receptor for 5-hydroxytryptamine in guinea-pig ileum with properties similar to the 5-hydroxtryptamine-4 receptor. J. Pharmacol Exp. Ther. 252: 1378–1386.

    Google Scholar 

  • Craig, D. A., Eglen, R. M., Walsh, L. K. M., Perkins, L. A., Whiting, R. L., and Clarke, D. E. (1990). 5-Methoxytryptamine and 2-methyl-5-hydroxytryptamine-induced desensitization as a discriminative tool for the 5-HT3 and putative 5-HT4 receptors in guinea pig ileum. Naunyn-Schmeideberg’s Arch. Pharmacol. 342: 9–16.

    Google Scholar 

  • De Chaffoy de Courcelles, D., Leysen, J. E., De Clerck, F., Van Belle, H., and Janssen, P. A. J. (1985) Phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J. Biol. Chem. 260: 7603–7608.

    Google Scholar 

  • Derkach, V., Surprenant, A. M., and North, R. A. (1989). 5-HT3 receptors are membrane ion channels. Nature (London) 339: 706–709.

    Article  Google Scholar 

  • De Vivo, M., and Maayani, S. (1986). Characterization of 5-hydroxytryptamine,A-receptormediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea-pig and rat hippocampal membrances. J. Pharmacol. Exp. Ther. 238: 248–253.

    Google Scholar 

  • Doyle, V. M., Creba, J. A., Rüegg, U. T., and Hoyer, D. (1986). Serotonin increases the production of inositol phosphates and mobilises calcium via the 5-HT2 receptor in Airs smooth muscle cells. Naunyn-Schmiederberg’s Arch. Pharmacol. 333: 98–107.

    Google Scholar 

  • Dumuis, A., Bouhelal, R., Sebben, M., and Bockaert, J. (1988a). A 5-HT receptor in the central nervous system, positvely coupled with adenylate cyclase, is antagonized by ICS 205 930. Eur. J. Pharmacol. 146: 187–188.

    Article  Google Scholar 

  • Dumuis, A., Bouhelal, R., Sebben, M., Cory, R., and Bockaert, J. (1988b). A non-classical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol. Pharmacol. 34: 880–887.

    Google Scholar 

  • Dumuis, A., Sebben, M., and Bockaert, J. (1988c). Pharmacology of 5-Hydroxytryptamine1A-receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Molecular Pharmacology 33: 178–186.

    Google Scholar 

  • Dumuis, A., Sebben, M., and Bockaert, J. (1989a). BRL 24924: A potent agonist at a non-classical 5-HT receptor positively coupled with adenylate cyclase in colliculi neurons. Eur. J. Pharmacol. 162: 381–384.

    Article  Google Scholar 

  • Dumuis, A., Sebben, M., and Bockaert, J. (1989b). The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor 5-HT-4 positively coupled to adenylate cyclase in neurons. Naunyn-Schmeideberg’s Arch Pharmacol. 340: 403–410.

    Article  Google Scholar 

  • Elswood, C. J., Bunce, K. T., and Humphrey, P. P. A. (1990). Identification of 5-HT4 receptors in guinea-pig ascending colon. The Second IUPHAR Satellite Meeting on Serotonin, Basel July 11–13, 1990. Abstr. 86, 78.

    Google Scholar 

  • Engel, G., Hoyer, D., Kalkman, H. O., and Wick, M. B. (1984). Identification of 5-HT2 receptors on longitudinal muscle of the guinea-pig ileum. J. Rec. Res. 4: 113–126.

    Google Scholar 

  • Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988). The genomic clone G-21 which resembles a ß-adrenergic receptor sequence encodes the 5-HT,A receptor. Nature 335: 358–360.

    Article  Google Scholar 

  • Fargin, A., Raymond, J. R., Regan, J. W., Cotecchia, S., Lefkowitz, R. J., and Caron, M. G. (1989). Effector coupling mechanisms of the cloned 5-HT,A receptor. J. Biol. Chem. 264: 14848–52.

    Google Scholar 

  • Fozard, J. R. (1983) Differences between receptors for 5-hydroxytryptamine on autonomic neurones revealed by nor-(-)-cocaine. J. Auton. Pharmac. 3: 21–26.

    Article  Google Scholar 

  • Gaddum, J. H., and Picarelli, Z. P. (1957). Two kinds of tryptamine receptor. Br. J. Pharmacol. Chemother. 12: 323–328.

    Google Scholar 

  • Gozlan, H., EI Mestikawy, S., Pichat, L., Glowinski, J., and Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors by a new ligand: 3H-PAT. Nature (London) 305: 140–142.

    Article  Google Scholar 

  • Green, J. P. (1987). Nomenclature and classification of receptors and binding sites: the need for harmony. Trends Pharmacol. Sci. 8: 90–94.

    Article  Google Scholar 

  • Hamel, E., and Bouchard, D. (1990). Contractile 5-HT, receptors in human pial arterioles: correlation with 5-HT,D binding sites. The Second IUPHAR Satellite Meeting on Serotonin, Basel July 11–13, 1990. Abstr. 68: 68.

    Google Scholar 

  • Heuring, R. E., and Peroutka, S. J. (1987). Characterization of a novel 3H-5-hydrox-ytryptamine binding site subtype in bovine brain membranes. J. Neurosci.7: 894–903.

    Google Scholar 

  • Hoyer, D. (1988a). Molecular pharmacology and biology of 5-HT1, receptors. TIPS 9: 89–94.

    Google Scholar 

  • Hoyer, D. (1988b). Functional correlates of serotonin 5-HT, recognition sites. J. Rec. Res. 8: 59–81.

    Google Scholar 

  • Hoyer, D. (1989). Biochemical mechanisms of 5-HT receptor-effector coupling in peripheral tissues, In: Fozard, J. R. (Ed) The peripheral actions of 5-hydroxytryptamine. Oxford University Press, pp 72–99.

    Google Scholar 

  • Hoyer, D. (1990). 5-HT3, 5-HT4 and 5-HT-M receptors. Neuropsychopharmacology, 3: 371–383.

    Google Scholar 

  • Hoyer, D., Engel, G., and Kalkman, H. O. (1985a). Characterization of the 5-HT,B recognition site in rat brain: binding studies with [125I]iodocyanopindolol. Eur. J. Pharmacol. 118: 1–12.

    Article  Google Scholar 

  • Hoyer, D., Engel, G., and Kalkman, H. O. (1985b). Molecular pharmacology of 5-HT, and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H] 5-HT, PH] 8-OH-DPAT,(-)[1251]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur. J. Pharmacol. 118: 13–23.

    Article  Google Scholar 

  • Hoyer, D., and Middlemiss, D. N. (1989). The pharmacology of the terminal 5-HT autoreceptors in mammalian brain: evidence for species differences. Trends Pharmacol. Sci. 10: 130–132.

    Article  Google Scholar 

  • Hoyer, D., and Neijt, H. C. (1987). Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG 108–15 neuroblastoma-glioma cells. Eur. J. Pharmacol. 143: 191–192.

    Article  Google Scholar 

  • Hoyer, D., and Neijt, H. C. (1988). Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol. Pharmacol. 33: 303–309.

    Google Scholar 

  • Hoyer, D., Pazos, A., Probst, A., and Palacios, J. M. (1986). Serotonin receptors in the human brain. I: Characterization and autoradiographic localization of 5-HT,,„, recognition sites. Apparent absence of 5-HT,B recognition sites. Brain Res. 376: 85–96.

    Article  Google Scholar 

  • Hoyer, D., and Schoeffter, P. (1988). 5-HT,U receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. Eur. J. Pharmacol. 147: 145–147.

    Article  Google Scholar 

  • Hoyer, D., Schoeffter, P., Waeber, C., Palacios, J. M., and Dravid, A. (1989). 5-HT,c receptor-mediated stimulation of inositol phosphate production in pig choroid plexus; a pharmacological characterization. Naunyn Schmiedeberg’s Arch. Pharmacol. 339: 252–258.

    Article  Google Scholar 

  • Kaumann, A. J., Sanders, L., Brown, A. M., Murray, K. J., and Brown, M. J. (1990). A 5-hydroxytryptamine receptor in human atrium. Br. J. Pharmacol. 100: 879–885.

    Google Scholar 

  • Kilpatrick, G. J., Jones, B. J., and Tyers, M. B. (1987). The identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330: 746–748.

    Article  Google Scholar 

  • Laduron, P. M. (1987). Limitations of binding studies for receptor classification, in Perspectives on receptor classification. Alan R. Liss, Inc. 71–79.

    Google Scholar 

  • Leysen, J. E., Niemegeers, C. J. E., Van Nueten, J. M., and Laduron, P. M. (1982). [3H]ketanserin (R41 468), a selective 3H ligand for serotonin 2 receptor binding sites. Mol. Pharmacol. 21: 301–314.

    Google Scholar 

  • Markstein, R., Hoyer, D., and Engel, G. (1986). 5-HT,,,,-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeberg’s Arch. Pharmacol. 333: 335–341.

    Article  Google Scholar 

  • Moser, P. C., Tricklebank, M. D., Middlemiss, D. N., Mir, A. K., Hibert, M. F., and Fozard, J. R. (1990). Characterization of MDL-73005EF as a 5-HT-IA selective ligand and its effects in animal models of anxiety, comparison with buspirone, 8-hydroxy-dpat and diazepam. Br. J. Pharmacol. 99: 343–349.

    Google Scholar 

  • Murphy, T. J., and Bylund, D. B. (1988). Oxymetazoline inhibits adenylate cyclase by activation of serotonin-I receptors in the OK cell, an established renal epithelial cell line. Mol. Pharmacol. 34: 1–7.

    Google Scholar 

  • Nakaki, T., Roth, B. L., Chuang, D., and Costa, E. (1985). Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca + + channels and phospholipase C. J. Pharmacol. Exp. Ther. 234: 442–446.

    Google Scholar 

  • Neijt, H. C., te Duits, I. J., and Vijverberg, H. P. M. (1988). Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacol. 27: 301–307.

    Article  Google Scholar 

  • Pazos, A., Hoyer, D., and Palacios, J. M. (1984). The binding of serotonergic ligand to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur. J. Pharmacol. 106: 539–546.

    Article  Google Scholar 

  • Pazos, A., and Palacios, J. M. (1985). Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-I receptors. Brain Res. 346: 205–230.

    Article  Google Scholar 

  • Pedigo, N. W., Yamamura, H. I., and Nelson, D. L. (1981). Discrimination of multiple [3H]5-hydroxytryptamine-binding sites by the neuroleptic spiperone in rat brain. J. Neurochem. 36: 220–226.

    Article  Google Scholar 

  • Peroutka, S. J. (1988). 5-Hydroxytryptamine receptor subtypes. Ann. Rev. Neurosci. 11: 45–60.

    Article  Google Scholar 

  • Peroutka, S. J., and Hamik, A. (1988). [3H]Quipazine labels 5-HT3 recognition sites in rat cortical membranes. Eur. J. Pharmacol. 148: 297–299.

    Article  Google Scholar 

  • Peroutka, S. J., and Snyder, S. H. (1979). Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol. Pharmacol. 16: 687–699.

    Google Scholar 

  • Peroutka, S. J., Hamik, A., Harrington, M. A., Hoffman, A. J., Mathis, C. A., Pierce, P. A., and Wang, S. S. H. (1988). (R)-(-)-[77Br]4-bromo-2, 5-dimethoxyamphetamine labels a novel 5-hydroxytryptamine binding site in brain membranes. Mol. Pharmacol. 34: 537–542.

    Google Scholar 

  • Peters, J. A., and Lambert, J. L. (1989). Electrophysiology of 5’-HT3 receptors in neuronal cell lines. TIPS 10: 172–175.

    Google Scholar 

  • Pritchett, D. B., Bach, A. W. J., Wozny, M., Taleb, O., Dal Toso, R., Shih, J. C., and Seeburg, P. H. (1988). Structure and functional expression of cloned rat serotonin 5-HT2 receptor. EM BO J. 7: 4135–4140.

    Google Scholar 

  • Richardson, B. P., and Engel, G. (1986). The pharmacology and function of the 5-HT3 receptors. Trends Neurosci. 9: 424–428.

    Article  Google Scholar 

  • Rydelek-Fitzgerald, L., Teitler, M., Fletcher, P. W., Ismaiel, A. M., and Glennon, R. A. (1990). NAN-190: agonist and antagonist interactions with brain 5-HTIA receptors. Brain Res. 532: 191–196.

    Article  Google Scholar 

  • Sanger, G. J. (1987). Increased gut cholinergic activity and antagonism of 5-hydroxytryptamine M-receptors by BRL 24924: potential clinical importance of BRL 24924. Br. J. Pharmacol. 91: 77–87.

    Google Scholar 

  • Schlicker, E., Fink, K., Göthert, M., Hoyer, D., Molderings, G., Roschke, I., and Schoeffter, P. (1989). The pharmacological properties of the presynaptic 5-HT autoreceptor in the pig brain cortex conform to the 5-HTID receptor subtype. Naunyn-Schmiedeberg’s Arch. Pharmacol. 340: 45–51.

    Google Scholar 

  • Schoeffter, P., and Hoyer, D. (1988). Centrally acting hypotensive agents with affinity for 5-HTiA binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br. J. Pharmacol. 95: 975–985.

    Google Scholar 

  • Schoeffter, P., and Hoyer, D. (1989a). 5-Hydroxytryptamine 5HTIB and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some ß-adrenoceptor antagonists. Naunyn-Schmiedeberg’s Arch. Pharmacol. 340: 285–292.

    Google Scholar 

  • Schoeffter, P., and Hoyer, D. (1989b). Interactions of arylpiperazines with 5-HTiA, 5-HT1B, 5-HT1C and 5-HT1D receptors: do discriminatory 5-HTIB ligands exist? Naunyn Schmiede-berg’s Arch. Pharmacol. 339: 675–683.

    Google Scholar 

  • Schoeffter, P., and Hoyer, D. (1990). 5-hydroxytryptamine (5-HT) induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1U receptor subtype. J. Pharmacol. Exp. Therap. 252: 387–395.

    Google Scholar 

  • Schoeffter, P., Waeber, C., Palacios, J. M., and Hoyer, D. (1988). The serotonin 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra. Naunyn Schmiedeberg’s Arch. Pharmacol. 337: 602–608.

    Article  Google Scholar 

  • Seuwen, K., Magnaldo, I., and Pouysségur, J. (1988). Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HTiB receptors coupled to a G;-protein. Nature 335: 254–256.

    Article  Google Scholar 

  • Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1985). Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. Eur. J. Pharmacol. 109: 427–429.

    Article  Google Scholar 

  • Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1987). Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol. Pharmacol. 31: 357–367.

    Google Scholar 

  • Teitler, M., Leonhardt, S., Weisberg, E., and Hoffman, B. J. (1990). 44125iodo-(2,5dimethoxy)phenylisopropylamine and [3H]ketanserin labeling of 5-hydroxytryptamine2 (5HT2) receptors in mammalian cells transfected with a rat 5-HT2 cDNA: evidence for multiple states and not multiple 5-HT2 receptor subtypes. Mol. Pharmacol. 38: 594–598.

    Google Scholar 

  • Villalon, C. M., Den Boer, M. O., Heiligers, J. P. C., and Saxena, P. R. (1990), Mediation of 5-hydroxytryptamine-induced tachycardia in the pig by the putative 5-HT4 receptor. Br. J. Pharmacol. 100: 665–667.

    Google Scholar 

  • Villalon, C. M., Den Boer, M. O., Heiligers, J. P. C., and Saxena, P. R. (1991). Further characterization, by use of tryptamine and benzamide derivatives, of the putative 5-HT4 receptor mediating tachycardia in pig. Br. J. Pharmacol. 102: 107–112.

    Google Scholar 

  • Waeber, C., Dietl, M. M., Hoyer, D., Probst, A., and Palacios, J. M. (1988a). Visualization of a novel serotonin recognition site (5-HT,D) in the human brain by autoradiography. Neurosci. Lett. 88: 11–16.

    Article  Google Scholar 

  • Waeber, C., Schoeffter, P., Palacios, J. M., and Hoyer, D. (1988b). Molecular pharmacology of 5-HT,D recognition sites: radioligand binding studies in human, pig and calf brain membranes. Naunyn Schmiedeberg’s Arch. Pharmacol. 337: 595–601.

    Google Scholar 

  • Waeber, C., Dietl, M. M., Hoyer, D., and Palacios, J. M. (1989a). 5-HT, receptors in the vertebrate brain: regional distribution examined by autoradiography. Naunyn Schmied-berg’s Arch. Pharmacol. 340: 486–494.

    Google Scholar 

  • Waeber, C., Schoeffter, P., Palacios, J. M., and Hoyer, D. (1989b). 5-HT,D receptors in the guinea-pig and pigeon brain: radioligand binding and biochemical studies, NaunynSchmiedeberg’s Arch. Pharmacol. 340: 479–485.

    Google Scholar 

  • Watling, K. J., Aspley, S., Swain, C. J., and Saunders, J. (1988). [H]-Quaternised ICS 205–930 labels 5-HT3 receptor binding sites in rat brain. Eur. J. Pharmacol. 149: 397–398.

    Article  Google Scholar 

  • Weiss, S., Sebben, M., Kemp, D. E., and Bockaert, J. (1986). Serotonin 5-HT, receptors mediate inhibition of cyclic AMP production in neurons. Eur. J. Pharmacol. 120: 227–230.

    Article  Google Scholar 

  • Yakel, J. L., and Jackson, M. B. (1988). 5-HT3 receptors mediate rapid responses in cultured Nhippocampus and a clonal cell line. Neuron. 1: 615–621.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hoyer, D., Boddeke, H., Schoeffter, P. (1991). Second Messengers in the Definition of 5-HT Receptors. In: Fozard, J.R., Saxena, P.R. (eds) Serotonin: Molecular Biology, Receptors and Functional Effects. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7259-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7259-1_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7261-4

  • Online ISBN: 978-3-0348-7259-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics