Skip to main content

Formation of Periodic and Aperiodic Waves in Reaction-Diffusion Systems

  • Chapter

Abstract

It is well known that spatially distributed excitable media can conduct excitations (e.g., pulses) initiated by a sufficiently large perturbations. Neurones, Purkinje fibers and other excitable tissues in biological systems belong to the most often discussed examples of excitable media [4,8]. However, more simple chemical systems with reaction and diffusion can be also excitable and may thus serve as model systems [15]. Let us consider an S-component, spatially one-dimensional system

$$ \frac{{\partial {\text{X}}_{\text{i}}}} {{\partial {\text{t}}}}\; = \;{\text{D}}_{\text{i}} \;\frac{{\partial ^2 {\text{X}}_{\text{i}}}} {{\partial {\text{Z}}^{\text{2}}}}\; + \;{\text{f}}_{\text{i}} ({\text{X}}_1 ,...{\text{X}}_{\text{s}} ),{\text{ i = 1,}}...{\text{,S ,}} $$
(1)

where Di denote diffusion coefficients and fi kinetic functions of a suitable form. The spatial coordinate z is from the interval [0,L] and proper boundary conditions (for example, describing zero flux of the components X1 at the boundaries) are also defined. We shall assume such conditions (kinetic and diffusion parameter values) that if the system is unperturbed, it stays in a stationary state without spatial gradients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T. (1983) On the arithemic of phase locking: coupled neurones as lattice on. Physica 6D, 305–320.

    Google Scholar 

  2. Argoul, F., Arneodo, A., Richetti, P., Roux, J. C. (1986) From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction I., II. Preprint, Université de Bordeaux.

    Google Scholar 

  3. Bagley, R. J., Mayer-Kress, G., Farmer, J. D. (1986) Mode locking, the Belousov-Zhabotinsky reaction, and one dimensional mappings. Phys. Lett. 114A, 419.

    Google Scholar 

  4. Cooke, I., Lipkin, M., Eds. (1972) Cellular neurophysiology. Holt, Rinehart and Winston, New York.

    Google Scholar 

  5. Hardy, G. H., Wright, E. M. (1965) An introduction of the theory of numbers, (Clarendon Press, Oxford).

    Google Scholar 

  6. Kubíček, M., Marek, M. (1983) Computational methods in bifurcation theory and dissipative structures, (Springer, New York).

    Google Scholar 

  7. Marek, M., Schreiber, I., Vroblová, L. (1986) Complex and chaotic waves in reaction-diffusion systems and on the effects of electric field on them. Proc. of the Midit (Lyngby) 1986 Workshop : “Structure, Coherence and Chaos in Dynamical Systems”, to apper in series “Nonlinear Science, Theory and Applications, Manchester Univ. Press.

    Google Scholar 

  8. Markin, V. S., Pastushenko, V. F., Chizmadzkev, Ju. A. (1981) Theory of excitable media. (in Russian), Nauka, Moscow.

    Google Scholar 

  9. Maselko, J., Swinney, H. L. (1985) A complex transition sequence in the Belousov-Zhabotinskii reaction. Physica Scripta T9, 35.

    Article  Google Scholar 

  10. Maselko, J., Swinney, H. L. (1986) Complex periodic oscillations and Farey arithmetic in the Belousov-Zhabotinskii reaction. Preprint, University of Texas at Austin.

    Google Scholar 

  11. Pomeau, Y., Manneville, P. (1980) Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189.

    Article  Google Scholar 

  12. Rinzel, J., Schwartz, I. B. (1984) One variable map prediction of Belousov-Zhabotinskii mixed mode oscillations. J Chem. Phys. 80, 5610–5615.

    Article  Google Scholar 

  13. Ševčíková, H., Marek, M. (1986) Chemical waves in electric field — modelling. Physica 21D, 61–77.

    Google Scholar 

  14. Tsuda, I.-(1981) Self-similarity in the Belousov-Zhabotinsky reaction. Phys. Lett. 85A, 4–8.

    Google Scholar 

  15. Zykov, V. S. (1984) Modelling of wave processes in excitable media. Nauka, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Marek, M., Schreiber, I. (1987). Formation of Periodic and Aperiodic Waves in Reaction-Diffusion Systems. In: Küpper, T., Seydel, R., Troger, H. (eds) Bifurcation: Analysis, Algorithms, Applications. ISNM 79: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 79. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7241-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7241-6_22

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7243-0

  • Online ISBN: 978-3-0348-7241-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics