Skip to main content

G-Protein-Linked Receptors and Tyrosine Kinase-Mediated Signal Transduction Pathways: A Mid-1990s Perspective, with Working Hypotheses

  • Chapter
Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s
  • 108 Accesses

Summary

G-protein signalling paradigms are reviewed, and data coming from four laboratories are summarized, indicating that G-protein-coupled agonists may act via tyrosine kinase pathways. Approaches to the analysis of these putative G-protein-regulated tyrosine kinase pathways are outlined and working hypotheses are put forward to explain the link between serpentine receptors such as the ones for angiotensin-II, vasopressin and bombesin and the activation of tyrosine kinases such as P125FAK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 1980; 284: 17–22.

    Article  PubMed  CAS  Google Scholar 

  2. Hepler JR, Gilman AG. “G-proteins”. Trends in Biol. Sci. 1992; 17: 383–387.

    Article  CAS  Google Scholar 

  3. DeVivo M, Iengar R. G-protein pathways: signal processing by effectors. Mol. Cell. Endocrinol. 1994; 100: 65–70.

    Article  PubMed  CAS  Google Scholar 

  4. Milligan G. Mechanisms of multifunctional signalling by G protein-linked receptors. Trends in Pharmacol. Sci. 1993; 14: 239–244.

    Article  CAS  Google Scholar 

  5. Savarese TM, Fraser CM. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem. J. 1992; 283: 1–19.

    PubMed  CAS  Google Scholar 

  6. Levitzki A, Bar-Sinai A. The regulation of adenylyl cyclase by receptor-operated G proteins. Pharmacol. Ther. 1991; 50: 271–283.

    Article  PubMed  CAS  Google Scholar 

  7. Levitzki A, Marbach I, Bar-Sinai A. The signal transduction between β-receptors and adenylyl cyclase. Life Sciences 1993; 52: 2093–2100.

    Article  PubMed  CAS  Google Scholar 

  8. Birnbaumer L. G proteins in signal transduction. Annu. Rev. Pharmacol. Toxicol. 1990; 30: 675–705.

    Article  PubMed  CAS  Google Scholar 

  9. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 1991; 252: 802–808.

    Article  PubMed  CAS  Google Scholar 

  10. Clapham DE, Neer EJ. New roles for G-protein βγ-dimers in transmembrane signalling. Nature 1993; 365: 403–406.

    Article  PubMed  CAS  Google Scholar 

  11. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991; 349: 117–126.

    Article  PubMed  CAS  Google Scholar 

  12. Berridge M. Inositol trisphosphate and calcium signalling. Nature 1993; 361: 315–325.

    Article  PubMed  CAS  Google Scholar 

  13. Huckle WR, Prokop CA, Dy RC, Herman B, Earp S. Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Molec. Cell. Biol. 1990; 10: 6290–6298.

    PubMed  CAS  Google Scholar 

  14. Force T, Kyriakis JA, Bonventre JV. Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and-independent pathways in glomerular mesangial cells. J. Biol. Chem. 1991; 266: 6650–6656.

    PubMed  CAS  Google Scholar 

  15. Tsuda T, Kawahara T, Shii K, Koide M, Ishida Y, Yokoyama M. Vasoconstrictor-induced protein-tyrosine phosphorylation in cultured vascular smooth muscle cells. FEBS Lett. 1991; 285: 44–48.

    Article  PubMed  CAS  Google Scholar 

  16. Zachary I, Gil J, Lehmann W, Sinnett-Smith J, Rozengurt E. Bombesin, vaspressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc. Natl. Acad. Sci. USA 1991; 88: 4577–4581.

    Article  PubMed  CAS  Google Scholar 

  17. Leeb-Lundberg LMF, Song X-H. Bradykinin and bombesin rapidly stimulate tyrosine phosphorylation of a 120-kDa group of proteins in Swiss 3T3 cells. J. Biol. Chem. 1991; 266: 7746–7749.

    PubMed  CAS  Google Scholar 

  18. Molloy CJ, Taylor DS, Weber H. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J. Biol. Chem. 1993; 268: 7338–7345.

    PubMed  CAS  Google Scholar 

  19. Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl. Acad. Sci. USA 1978; 75: 2021–2024.

    Article  PubMed  CAS  Google Scholar 

  20. Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA 1980; 77: 1311–1315.

    Article  PubMed  CAS  Google Scholar 

  21. Glenney JR, Jr. Tyrosine-phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim. Biophys. Acta 1992; 1134: 113–127.

    Article  PubMed  CAS  Google Scholar 

  22. Schlessinger J, Ullrich A. Growth factor signalling by receptor tyrosine kinases. Neuron 1992; 9: 383–391.

    Article  PubMed  CAS  Google Scholar 

  23. Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon α/β signalling pathway. Cell 1992; 70: 313–322.

    Article  PubMed  CAS  Google Scholar 

  24. Silvennolnen O, Ihle JN, Schlessinger J, Levy DE. Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 1993; 366: 583–585.

    Article  Google Scholar 

  25. Shual K, Zlemlecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, et al. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 1993; 366: 580–583.

    Article  CAS  Google Scholar 

  26. Wang L-M, Keegan AD, Li W, Lienhard GE, Pacini S, Gutkind JS, et al. Common elements in interleukin 4 and insulin signalling pathways in factor-dependent hematopoietic cells. Proc. Natl. Acad. Sci. USA 1993; 90: 4032–4036.

    Article  PubMed  CAS  Google Scholar 

  27. Miyajima A, Kitamura T, Harada N, Yokota T, Arai K-I. Cytokine receptors and signal transduction. Ann. Rev. Immunol. 1992; 10: 295–331.

    Article  CAS  Google Scholar 

  28. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994; 76: 253–262.

    Article  PubMed  CAS  Google Scholar 

  29. Hollenberg MD. The acute actions of growth factors in smooth muscle systems. Life Sci. 1994; 54: 223–235.

    Article  PubMed  CAS  Google Scholar 

  30. Hollenberg MD. Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends in Pharmacol. Sci. 1994; 15: 108–114.

    Article  CAS  Google Scholar 

  31. Cohen P. Dissection of the protein phosphorylation cascades involved in insulin and growth factor action. Biochem. Soc. Trans. 1993; 214: 555–567.

    Google Scholar 

  32. Rozengurt E, Earp HS, Hollenberg MD, De LĂ©an A. G-protein-linked receptors and tyrosine kinase signal transduction pathways. Can. J. Physiol. Pharmacol. 1994; 72, Suppl. 1, 39.

    Google Scholar 

  33. Rozengurt E, Sinnett-Smith J, Zachary I, Seckl M, Rankin S. Agonist stimulation of tyrosine phosphorylation in cultured cell systems. Can. J. Physiol. Pharmacol. 1994; 72, Suppl. 1, 39.

    Google Scholar 

  34. Earp HS, Huckle WR. Intracellular calcium and the regulation of agonist-stimulated tyrosine activity. Can. J. Physiol. Pharmacol. 1994; 72, Suppl. 1, 39.

    Google Scholar 

  35. De LĂ©an A. Involvement o protein tyrosine kinase in secretagogue-induced steroid production. Can. J. Physiol. Pharmacol. 1994; 72, Suppl. 1, 39.

    Google Scholar 

  36. Hollenberg MD. Tyrosine kinase pathways and the actions of agonists in gastric and vascular smooth muscle systems. Can. J. Physiol. Pharmacol. 1994; 72, Suppl. 1, 39.

    Google Scholar 

  37. Zachary I, Rozengurt E. Focal Adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 1992; 71: 891–894.

    Article  PubMed  CAS  Google Scholar 

  38. Sinnett-Smith J, Zachary I, Valverde AM, Rozengurt E. Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. J. Biol. Chem. 1993; 268: 14261–14268.

    PubMed  CAS  Google Scholar 

  39. Zachary I, Sinnett-Smith J, Turner CE, Rozengurt E. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J. Biol. Chem. 1993; 268: 22060–22065.

    PubMed  CAS  Google Scholar 

  40. Seckl M, Rozengurt E. Tyrphostin inhibits bombesin stimulation of tyrosine phosphorylation, c-fos expression, and DNA synthesis in Swiss 3T3 cells. J. Biol. Chem. 1993; 268: 9548–9954.

    PubMed  CAS  Google Scholar 

  41. Bodart V, Ong H, De Lean A. A role for protein tyrosine kinases in the steroidogenic pathway of angiotensin II in bovine zona glomerulosa cells. Can. J. Physiol. Pharmacol. 1994; 72, Suppl. 1, 555.

    Google Scholar 

  42. Yang S-G, Saifeddine M, Laniyonu AA, Hollenberg MD. Distinct signal transduction pathways for angiotensin-II in guinea pig gastric smooth muscle: Differential blockade by indomethacin and tyrosine kinase inhibitors. J. Pharmacol. Exp. Ther. 1993; 264: 958–966.

    PubMed  CAS  Google Scholar 

  43. Wolbring G, Hollenberg MD, Schnetkamp PPM. Inhibition of GTP-utilizing enzymes by tyrphostins. J. Biol. Chem. 1994; 269: 22470–22472.

    PubMed  CAS  Google Scholar 

  44. Levitzki A. Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. FASEB J. 1992; 3275–3282.

    Google Scholar 

  45. Miura T, Kikuchi A, Musha T, Kuroda S, Yaku H, Sasaki T, et al. Regulation of morphology by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in Swiss 3T3 cells. J. Biol. Chem. 1993; 268: 510–505.

    PubMed  CAS  Google Scholar 

  46. Exton JH. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta 1994; 1212: 26–42.

    PubMed  CAS  Google Scholar 

  47. Sternweis PC. The active role of beta gamma in signal transduction. Cell Biol. 1994; 6: 198–203.

    CAS  Google Scholar 

  48. Cuatrescasas P, Hollenberg MD. Membrane receptors and hormone action. Adv. Protein Chem. 1976; 30: 251–451.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hollenberg, M.D. (1995). G-Protein-Linked Receptors and Tyrosine Kinase-Mediated Signal Transduction Pathways: A Mid-1990s Perspective, with Working Hypotheses. In: Cuello, A.C., Collier, B. (eds) Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7218-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7218-8_9

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7220-1

  • Online ISBN: 978-3-0348-7218-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics