Skip to main content
  • 107 Accesses

Summary

Recent published evidence has increased our understanding on the cellular and molecular mechanisms involved in secretion. It has been demonstrated that the ratios among soluble components of secretory vesicles can be changed according to specific demands and that vesicle contents are released in response to an increase in [Ca2+]i, which is the result of [Ca2+]0 entry through some but not all Ca2+ channels present in neurosecretory cells. It is also clear that target cells modulate the handling of [Ca2+]i by neurosecretory cells. One site of action for Ca2+ is the cytoskeleton. This organelle controls in neurons as well as in other secretory cells, the delivery of secretory vesicles to exocytotic sites. A fine regulation of this process is provided by second messengers and actin associated proteins such as scinderin and synapsin I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winkler H. Modifications of the secretory content of large dense core vesicles by regulation of biosynthesis. Can. J. Physiol. Pharmacol. 1994; 72(1): 56.

    Google Scholar 

  2. Trifaró J-M, Vitale ML. Cytoskeleton dynamics during neurotransmitter release. TINS 1993; 16: 466–472.

    PubMed  Google Scholar 

  3. Benfenati F, Valtorta F, Greengard P. The synapsins, a family of synaptic vesicle proteins regulating neurotransmitter release and synapse formation. Can. J. Physiol. Pharmacol. 1994; 72(1): 56.

    Google Scholar 

  4. Trifaró J-M, Marcu M, Vitale ML, Rodriguez Del Castillo A. Scinderin and cytoskeleton dynamics during exocytosis. Can. J. Physiol. Pharmacol. 1994; 72(1): 56.

    Google Scholar 

  5. Garcia AG, Michelena P, Artalejo AR, Gandfa L, Albillos A, von Riiden L et al. Control of the neurosecretory process by cytosolic calcium. Can. J. Physiol. Pharmacol. 1994; 72(1): 56.

    Article  Google Scholar 

  6. Wakade AR, Przywara DA, Wakade TD. Cardiac cells control norepinephrine release in cultured sympathetic neurons. Can. J. Physiol. Pharmacol. 1994; 72(1): 56.

    Google Scholar 

  7. Winkler H, Fischer-Colbrie R. Common membrane proteins of chromaffin granules, endocrine and synaptic vesicle: properties, tissue distribution, membrane topography and regulation of synthesis. Neurochem. Int. 1990; 17: 245–262.

    Article  PubMed  CAS  Google Scholar 

  8. Laslop A, Wohlfarter T, Fischer-Colbrie R, Steiner HJ, Humpel Ch, Saria A et al. Insulin hypoglycemia increases the levels of neuropeptide Y and calcitonin gene-related peptide, but not of chromogranins A and B, in rat chromaffin granules. Reg. Peptides 1989; 26: 191–202.

    Article  CAS  Google Scholar 

  9. Sietzen M, Schober M, Fischer-Colbrie R, Scherman D, Sperk G, Winkler H. Rat adrenal medulla: levels of chromogranins, enkephalins, dopamine 0-hydroxylase and of the amine transporter are changed by nervous activity and hypophysectomy. Neuroscience 1987; 22: 131–139.

    Article  PubMed  CAS  Google Scholar 

  10. Mahata SK, Mahata M, Steiner H-J, Fischer-Colbrie R, Winkler H. In situ hybridization: mRNA levels of secretogranin II, neuropeptides and carboxypeptidase H in brains of salt loaded and Brattleboro rats. Neuroscience 1992; 48: 669–680.

    Article  PubMed  CAS  Google Scholar 

  11. Michelena P, Garcia-Perez L-E, Artalejo AR, Garcia AG. Separation between cytosolic calcium and secretion in chromaffin cells superfused with calcium ramps. Proc. Natl. Acad. Sci. USA 1993; 90: 3284–3288.

    Article  PubMed  CAS  Google Scholar 

  12. Lopez MG, Albillos A, de la Fuente MT, Borges R, Gandía L, Carbone E et al. Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pfliigers Arch. Europ. J. Physiol. 1994; 427: 348–354.

    Article  CAS  Google Scholar 

  13. Albillos A, Garcia AG, Gandia L. ω-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett. 1993; 336: 259–262.

    Article  PubMed  CAS  Google Scholar 

  14. Garda AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz RI, Gandía L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 1984; 308: 69–71.

    Article  Google Scholar 

  15. Lee RWH, Trifaró J-M. Characterization of anti-actin antibodies and their use in immunocytochemical studies on the localization of actin in adrenal chromaffin cells. Neuroscience 1981; 6: 2087–2108.

    Article  PubMed  CAS  Google Scholar 

  16. Trifaró J-M, Lee RWH, Kenigsberg RL, Côté A. Contractile proteins and chromaffin cell function. Adv. Biosc. 1982; V: 151–158.

    Google Scholar 

  17. Vitale ML, Rodriguez Del Castillo A, Tchakarov L, Trifaró J-M. Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis: a phenomenon not exhibited by gelsolin. J. Cell Biol. 1991; 113: 1057–1067.

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez Del Castillo A, Lemaire S, Tchakarov L, Jeyapragasan M, Doucet JP, Vitate ML, Trifaró J-M. Chromaffin cell scinderin: a novel calcium-dependent actin-filament severing protein. EMBO J. 1990; 9: 43–52.

    Google Scholar 

  19. Tchakarov L, Vitale ML, Jeyapragasan M, Rodriguez Del Castillo A, Trifaró J-M. Expression of scinderin, an actin filament severing protein in different tissues. FEBS Lett. 1990; 268: 209–212.

    Article  PubMed  CAS  Google Scholar 

  20. Roderiguez Del Castillo A, Vitale ML, Trifaró J-M. Ca2+ and pH determine the interaction of chromaffin cell scinderin with phosphatidylserine and phosphatidylinositol 4,5 bisphosphate and its cellular distribution during nicotine-receptor stimulation and protein kinase C activation. J. Cell Biol. 1992; 119: 797–810.

    Article  Google Scholar 

  21. Marcu MG, Rodriguez Del Castillo A, Trifaró J-M. Molecular cloning of bovine chromaffin cell scinderin (Sc) cDNA reveals actin polyphosphoinositide (PPI) binding domains. Can. J. Physiol. Pharmacol. 1994; 72(1): 264.

    Google Scholar 

  22. Marcu MG, Rodriguez Del Castillo A, Vitale ML, Trifaró J-M. Molecular cloning and functional expression of chromaffin cell scinderin indicates that it belongs to the family of Ca2+-dependent F-actin severing proteins. Mol. Cell. Biochem. 1994; 141: 153–165.

    Article  PubMed  CAS  Google Scholar 

  23. Vitale ML, Rodriguez Del Castillo A, Trifaró J-M. Protein kinase C activation by phorbol esters induces chromaffin cell cortical filamentous actin disassembly and increases the initial rate of exocytosis in response to nicotinic receptor stimulation. Neuroscience 1992; 51: 463–474.

    Article  PubMed  CAS  Google Scholar 

  24. Greengard P, Valtorta F, Czernik AJ, Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 1993; 259: 780–785.

    Article  PubMed  CAS  Google Scholar 

  25. Bedfenati F, Valtorta F, Chieregatti E, Greengard P. Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 1992; 8: 377–386.

    Article  Google Scholar 

  26. Llinas R, Grüner JA, Sugimori M, McGuinness TL, Greengard P. Regulation by synapsin I and Ca2+/calmodulin-dependent kinase II of transmitter release in squid giant synapse. J. Physiol. 1991; 436: 257–282.

    PubMed  CAS  Google Scholar 

  27. Benfenati F, Valtorta F, Greengard P. Computer modelling of synapsin I binding to synaptic vesicles and F-actin: implications for regulation of neurotransmitter release. Proc. Natl. Acad. Sci. USA 1991; 88: 575–579.

    Article  PubMed  CAS  Google Scholar 

  28. Lu B, Greengard P, Poo M-m. Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron 1992; 8: 521–529.

    Article  PubMed  CAS  Google Scholar 

  29. Wakade AR, Wakade TD. Comparison of transmitter release properties of embryonic sympathetic neurons growing in vivo and in vitro. Neuroscience 1988; 27: 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  30. Przywara DA, Bhave SV, Bhave A, Wakade TD, Wakade AR. Dissociation between intracellular Ca2+ and modulation of 3H-noradrenaline release in chick sympathetic neurons. J. Physiol. 1991; 437: 201–220.

    PubMed  CAS  Google Scholar 

  31. Levi-Montalcini R, Hamburger. Selective growth-stimulating effects of mouse sarcoma on sensory and sympathetic nervous system of chick embryo. J. Exp. Zool. 1951; 116: 321–361.

    Article  PubMed  CAS  Google Scholar 

  32. Patterson PH. Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci, 1978; 1: 1–17.

    Article  PubMed  CAS  Google Scholar 

  33. Way M, Weeds A. Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J. Mol. Biol. 1988; 203: 1127–1133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Trifaró, JM., García, A.G. (1995). Molecular and Cellular Mechanisms in Neurosecretion. In: Cuello, A.C., Collier, B. (eds) Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7218-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7218-8_28

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7220-1

  • Online ISBN: 978-3-0348-7218-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics