Skip to main content

Calcium Channels, Calcium Channel Antagonists and the Functioning of the Gastrointestinal Tract

  • Chapter
Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s

Summary

Calcium ions play an essential role in the generation of motor activity of the gastrointestinal tract. Calcium ions enter gastrointestinal smooth muscle cells to activate contractile proteins through voltage-activated ion channels, through ion channels opened by activation of plasma membrane receptors and through release from internal stores. The pharmacology of these pathways is under intense investigation. However, at the moment only drugs that affect voltage dependent calcium channels have reached clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szurszewski JH. Electrophysiological basis for gastrointestinal motility. In: Johnson LR, (editor), Physiology of the gastrointestinal tract, Vol. 2. New York: Raven Press, 1981: 1435–1466.

    Google Scholar 

  2. Sanders KM. Ionic mechanisms of electrical rhythmicity in gastrointestinal smooth muscles. Annu. Rev. Physiol. 1992; 54: 439–453.

    Article  PubMed  CAS  Google Scholar 

  3. Huizinga JD. Action potentials in gastrointestinal smooth muscle. Can. J. Physiol. Pharmacol. 1991; 69: 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  4. Langton PD, Burke EP, Sanders KM. Participation of Ca currents in colonic electrical activity. Am. J. Physiol. 1989; 257: C451–C460

    PubMed  CAS  Google Scholar 

  5. Vogalis F, Publicover NG, Hume JR, Sanders KM. Relationship between calcium current and cytosolic calcium in canine gastric smooth muscle cells. Am. J. Physiol. 1991; 260: C1012–C1018.

    PubMed  CAS  Google Scholar 

  6. Molleman A, Thuneberg L, Huizinga JD. Characterization of the outward rectifying potassium channel in a novel intestinal smooth muscle preparation. J. Physiol. 1993; 470: 211–229.

    PubMed  CAS  Google Scholar 

  7. Barajas-Lopez C, Huizinga JD. Different mechanisms of contraction generation in circular muscle of canine colon. Am. J. Physiol. 1989; 256: G570–G580.

    PubMed  CAS  Google Scholar 

  8. Sims SM, Singer JJ, Walsh JV, Jr. Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad. J. Physiol. (Lond) 1985; 367: 503–529.

    CAS  Google Scholar 

  9. Sims SM, Janssen LJ. Cholinergic excitation of smooth muscle. NIPS 1993; 8: 207–212.

    CAS  Google Scholar 

  10. Godfraind T, Miler R, Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev. 1986; 38: 321–416.

    PubMed  CAS  Google Scholar 

  11. Huizinga JD, Liu LWC. Role of calcium channels in pharmacological modulation of gastrointestinal motility. In: Christen MO, Paoletti R (editors), Calcium antagonists in gastroenterology research and perspectives. Boston: Kluwer Academic Publishers, 1993: 31–39.

    Google Scholar 

  12. De Ponti F, Giaroni C, Cosentino M, Lecchini S, Frigo G. Calcium-channel blockers and gastrointestinal motility: basic and clinical aspects [review]. Pharmacol. & Ther. 1993; 60: 121–148.

    Article  Google Scholar 

  13. Feron O, Octave JN, Christen MO, Godfraind T. Quantification of two splicing events in the L-type calcium channel alpha-1 subunit of intestinal smooth muscle and other tissues. Eur. J. Biochem. 1994; 222: 195–202.

    Article  PubMed  CAS  Google Scholar 

  14. Feron O, Wibo M, Christen MO, Godfraind T. Interaction of pinaverium (a quaternary ammonium compound) with 1,4-dihydropyridine binding sites in rat ileum smooth muscle. Br. J. Pharmacol. 1992; 105: 480–484.

    PubMed  CAS  Google Scholar 

  15. Beech DJ, MacKenzie I, Bolton TB, Christen MO. Effects of pinaverium on voltage-activated calcium channel currents of single smooth muscle cells isolated from the longitudinal muscle of the rabbit jejunum. Br. J. Pharmacol. 1990; 99: 374–378.

    PubMed  CAS  Google Scholar 

  16. van Breemen C. Calcium requirement for activation of intact aortic smooth muscle. J. Physiol. (Lond) 1977; 272: 317–329.

    Google Scholar 

  17. Liu LWC, Thuneberg L, Huizinga JD. Regulation of colonic pacemaker frequency by intracellular calcium in sacroplasmic reticulum [abstract]. J. Gastroint. Motil. 1993; 5: 201.

    Google Scholar 

  18. Huizinga JD, Farraway L, Den Hertog A. Generation of slow-wave-type action potentials in canine colon smooth muscle involves a non-L-type Ca2+ conductance. J. Physiol (Lond) 1991; 442: 15–29.

    CAS  Google Scholar 

  19. Wibo M, Godfraind T. Comparative localization of inositol 1,4,5-triphosphate and ryanodine receptors in intestinal smooth muscle: an analytical subfractionation study. Biochem. J. 1994; 297: 415–423.

    PubMed  CAS  Google Scholar 

  20. Loutzenhiser R, Leyten P, Saida K, van Breemen C. Ca2+ compartments and Ca2+ mobilization during contraction of smooth muscle. In: Grover AK, Daniel EE (editors), Calcium and smooth muscle contractility. Clifton NJ: Humana Press Inc. 1985.

    Google Scholar 

  21. Chen Q, Cannell M, van Breemen C. The superficial buffer barrier in vascular smooth muscle. Can. J. Physiol. Pharmacol. 1992; 70: 509–514.

    Article  PubMed  CAS  Google Scholar 

  22. Ganitkevich VY, Isenberg G. Caffeine-induced release and reuptake of Ca2+ by Ca2+ stores in myocytes from guinea-pig urinary bladder. J. Physiol. (Lond) 1992; 458: 99–117.

    CAS  Google Scholar 

  23. van Breemen C, Cauvin C, Johns A, Leijten P, Yamamoto H. Ca2+ regulation of vascular smooth muscle [review]. Federation Proceedings 1986; 45: 2746–2751.

    PubMed  Google Scholar 

  24. Nishimura J, Khalil RA, van Breemen C. Agonist-induced vascular tone [review]. Hypertension 1989; 13: 835–844.

    PubMed  CAS  Google Scholar 

  25. Chen Q, van Breemen C. The superficial buffer barrier in venous smooth muscle;, sarcocplasmic reticulum refilling and unloading. Br. J. Pharmacol. 1993; 109: 336–343.

    PubMed  CAS  Google Scholar 

  26. Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I. The pharmacology of intracellular Ca2+-release channels. Trends in Pharmacol. Sci. 1994; 15: 145–149.

    Article  CAS  Google Scholar 

  27. Godfraind T, Christen MO, Dessy C, Feron O, Morel N, Octave JN et al. Characterization of receptors for calcium channel blockers on intestinal smooth muscle [abstract]. Can. J. Physiol. Pharmacol. 1994; 72(Suppl. 1): 19.

    Google Scholar 

  28. Inoue R, Kitamura K, Kuriyama H. Acetylcholine activates single sodium channels in smooth muscle cells. Pflugers Archiv — Eur. J. Physiol. 1987; 410: 69–74.

    Article  CAS  Google Scholar 

  29. Vogalis F, Sanders KM. Cholinergic stimulation activates a non-selective cation current in canine pyloric circular muscle cells. J. Physiol. (Lond) 1990; 429: 223–236.

    CAS  Google Scholar 

  30. Inoue R, Isenberg G. Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am. J. Physiol. 1990; 258: C1173–C1178.

    PubMed  CAS  Google Scholar 

  31. Pacaud P, Bolton TB. Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J. Physiol. (Lond) 1991; 441: 477–499.

    CAS  Google Scholar 

  32. Cousins HM, Edwards FR, Hirst GD, Wendt IR. Cholinergic neuromuscular transmission in the longitudinal muscle of the guinea-pig ileum. J. Physiol. (Lond) 1993; 471: 61–86.

    CAS  Google Scholar 

  33. Chen S, Inoue R, Ito Y. Pharmacological characterization of muscarinic receptor-activated cation channels in guinea-pig ileum. Br. J. Pharmacol. 1993; 109: 793–801.

    PubMed  CAS  Google Scholar 

  34. Inoue R, Isenberg G. Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. (Lond) 1990; 424: 57–71.

    CAS  Google Scholar 

  35. Siemen D, Hescheler J, editors. Nonselective cation channels: pharmacology, physiology and biophysics. Basel: Birkhäuser Verlag 1993.

    Google Scholar 

  36. Hongo M, Traube M, McAllister RG, Jr., McCallum RW. Effects of nifedipine on esophageal motor function in humans: correlation with plasma nifedipine concentration. Gastroenterology 1984; 86: 8–12.

    PubMed  CAS  Google Scholar 

  37. Collins SM. The irritable bowel syndrome. Can. Med. Assoc. J. 1988; 138: 309–316.

    CAS  Google Scholar 

  38. Heaton KW. Epidemiology of irritable bowel syndrome. European Journal of Gastroenterology and Hepatology 1994; 6: 465–469.

    Article  Google Scholar 

  39. Godfraind T, Govoni S, Paoletti R, Vanhoutte PM, editors. Calcium antagonists. Pharmacology and Clinical Research. Dordrecht, The Netherlands: Kluwer Academic Publishers 1993.

    Google Scholar 

  40. Cann PA, Read NW, Brown C, Hobson N, Holdsworth CD. Irritable bowel syndrome: relationship of disorders in the transit of a single solid meal to symptom patterns. Gut 1983; 24: 405–411.

    Article  PubMed  CAS  Google Scholar 

  41. Christen MO. Action of pinaverium bromide, a calcium-antagonist, on gastrointestinal motility disorders. Gen. Pharmac. 1990; 21 No. 6: 821–825.

    CAS  Google Scholar 

  42. Fioramonti J, Frexinos J, Staumont G, Bueno L. Inhibition of the colonic motor response to eating by pinaverium bromide in irritable bowel syndrome patients. Fundamental & Clinical Pharmacology 1988; 2: 19–27.

    Article  CAS  Google Scholar 

  43. Inoue R, Isenberg G. Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. (Lond) 1990; 424: 73–92.

    CAS  Google Scholar 

  44. Frexinos J, Fioramonti J, Bueno L. Colonic myoelectrical activity in IBS painless diarrhoea. Gut 1987; 28: 1613–1618.

    Article  PubMed  CAS  Google Scholar 

  45. Huizinga JD, Waterfall WE. Electrical correlate of circumferential contractions in human colonic circular muscle. Gut 1988; 29: 10–16.

    Article  PubMed  CAS  Google Scholar 

  46. Huizinga JD. Electrophysiology of human colon motility in health and disease. Clin. Gastroenterol. 1986; 15: 879–901.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Huizinga, J.D. et al. (1995). Calcium Channels, Calcium Channel Antagonists and the Functioning of the Gastrointestinal Tract. In: Cuello, A.C., Collier, B. (eds) Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7218-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7218-8_12

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7220-1

  • Online ISBN: 978-3-0348-7218-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics