Skip to main content

Receptor-G Protein-Effector Coupling: Coding and Regulation of the Signal Transduction Process

  • Chapter

Summary

Regulation of G protein mediated signal transduction is thought to occur primarily as the result of the occupancy of a receptor by the appropriate agonist. There is much regulation of this process, however, which occurs independently of straightforward agonist occupancy. It is demonstrated here that receptors themselves might have intrinsic activity and the expression of such intrinsically activated receptors might alter the activated state of a G protein and its effector within a given cell. The regulation of receptor display on the cell surface is also discussed and it is seen that the ability to sequester, internalize and restore receptors to the plasma membrane is quite different for different types of G protein coupled receptors. The suggestion that a given receptor uses specific G protein α, β, and γ subunits in order to couple receptor to effector is also explored. Such coding would allow a cell to shape its response to a given agonist. It further proposed that elements of the cytoskeleton (tubulin) form complexes with Gs, Gil or Gq and activate those proteins via the direct transfer of GTP. In this way, changes in cell shape could be conveyed into the intracellular mileu. Further, these cytoskeletal elements might act as the contact point for interplay among various signal transduction systems within the cell. Finally, it is observed that voltage-dependent calcium channels undergo a complex regulation in which G protein β subunits compete with one of the polypeptides making up the channel. Such a process allows for the neurotransmitter modulation of neurotransmitter release. Such modulation returns full circle back to the receptor-mediated activation of G proteins and the possibility that this process is modulated in the cellular interior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon M, Strathman M, Gautam N. Diversity of G proteins in signal transduction. Science 1991; 252: 802–808.

    Article  PubMed  CAS  Google Scholar 

  2. Rasenick MM. G’s (a poem). Trends in Biochemical Science 1992; 17: 71.

    Google Scholar 

  3. Taussig R, Iniguez-Lluhi J, Gilman A. Inhibition of adenylyl cyclase by G. Science 1993; 261: 218.

    Article  PubMed  CAS  Google Scholar 

  4. Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR. Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 1992; 356: 159–161.

    Article  PubMed  CAS  Google Scholar 

  5. Iyenger R. Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB Journal 1993; 7: 768–775.

    Google Scholar 

  6. Cotecchia S, Exum S, Caron MG, Lefkowitz RJ. Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc. Natl. Acad. Sci. USA 1990; 87: 2896–2900.

    Article  PubMed  CAS  Google Scholar 

  7. Samama P, Cotecchia P, Costa T, Lefkowitz RJ. A mutation-induced activated state of the β2 adrenergic receptor: extending the ternary complex theory. J. Biol. Chem. 1993; 268: 4625–4636.

    PubMed  CAS  Google Scholar 

  8. Tiberi M, Jarvis KR, Silva C, Falardeau P, Gingrich JA et al. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: Differential expression pattern in rat brain compared with rat D1A receptor. Proc. Natl. Acad. Sci. USA 1991; 88: 7491–7495.

    Article  PubMed  CAS  Google Scholar 

  9. Lefkowitz RJ, Cottechia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends in Pharm. Sci. 1993; 14: 303–307.

    Article  CAS  Google Scholar 

  10. Tiberi M, Caron MG. High agonist-independent activity is a distinguishing feature of the dopamine DIB receptor subtype. J. Biol. Chem. 1994; 269: 27925–27931.

    PubMed  CAS  Google Scholar 

  11. Hein LK, Ishii SR, Coughlain SR, Kobilka BK. Intracellular targeting and trafficking of thrombin receptors: a novel mechanism for resensitization of a G protein-coupled receptor. J. Biol. Chem. 1994; 269: 27719–27726.

    PubMed  CAS  Google Scholar 

  12. Keefer JR, Limbird LE. The alpha 2A-adrenergic receptor is targeted directly to the basolateral membrane domain of Madin-Darby canine kidney cells independent of coupling to pertussis toxin-sensitive GTP-binding proteins. J. Biol. Chem. 1993; 268: 11340–11347.

    PubMed  CAS  Google Scholar 

  13. vonZastrow M, Link MR, Daunt D, Barsh G, Kobilka BK. Subtype-specific differences in the intracellular sorting of G protein-coupled receptors. J. Biol. Chem. 1993; 268: 763–766.

    CAS  Google Scholar 

  14. Neer EJ, Clapham DE. Roles of G protein subunits in transmembrane signalling. Nature 1988; 333: 129–134.

    Article  PubMed  CAS  Google Scholar 

  15. vonZastrow M, Kobilka BK. Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 1992; 267: 3530–3538.

    CAS  Google Scholar 

  16. vonZastrow M, Kobilka BK. Antagonist-dependent and-independent steps in the mechanism of adrenergic receptor internalization. J. Biol. Chem. 1994; 269: 18448–18452.

    CAS  Google Scholar 

  17. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1059–1068.

    Article  Google Scholar 

  18. Roychowdhury S, Wang N, Rasenick MM. G protein binding and G protein activation by nucleotide transfer involve distinct domains on tubulin: regulation of signal transduction by cytoskeletal elements. Biochemistry 1993; 32: 4955–4961.

    Article  PubMed  CAS  Google Scholar 

  19. Wang N, Yan K, Rasenick MM. Tubulin binds specifically to the signal-transducing proteins, Gsa and Gial. J. Biol. Chem. 1990; 265: 1239–1242.

    PubMed  CAS  Google Scholar 

  20. Roychowdhury S, Rasenick MM. Tubulin-G protein association stabilizes GTP binding and activates GTPase: Cytoskeletal participation in neuronal signal transduction. Biochemistry 1994; 33: 9800–9805.

    Article  PubMed  CAS  Google Scholar 

  21. Popova JS, Johnson GL, Rasenick MM. Chimeric Gαs/Gαi2 proteins define domains on Gas which interact with tubulin for the β adrenergic activation of adenylyl cyclase. J. Biol. Chem. 1994; 269: 21748–21754.

    PubMed  CAS  Google Scholar 

  22. Andrade R. Enhancement of β-adrenergic responses by Gi-linked receptors in rat hippocampus. Neuron 1993; 10: 83–88.

    Article  PubMed  CAS  Google Scholar 

  23. Kleuss C, Heschler J, Ewel C, Rosenthal W, Schultz G, Wittig B. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 1991; 353: 43–48.

    Article  PubMed  CAS  Google Scholar 

  24. Gollasch M, Kleuss C, Hescheler J, Wittig B, Schultz G. G12 and protein kinase C are required for thyrotrophin-releasing hormone induced stimulation of voltage-dependent Ca2+ channels in rat pituitary GH3 cells. Proc. Natl. Acad. Sci. USA 1993; 90: 6265–6269.

    Article  PubMed  CAS  Google Scholar 

  25. Hescheler J, Schultz G. G-protein involved in the calcium channel signaling system. Curr. Opinion Neurobiol. 1993; 3: 360–367.

    Article  CAS  Google Scholar 

  26. Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B. Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 1992; 358: 424–426.

    Article  PubMed  CAS  Google Scholar 

  27. Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B. Selectivity in signal transduction determined by gamma subunits of heterotrimeric G proteins. Science 1993; 259: 832–834.

    Article  PubMed  CAS  Google Scholar 

  28. Nurnberg B, Friedrich P, Hescheler J. Distinct properties of three α-subtypes of the G-protein Go purified from mammalian brains. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1993; 347: R60.

    Google Scholar 

  29. Nurnberg B, Degtiar VE, Harhammer R, Uhde M, Hescheler J, Schultz G. Hormone-induced Goα subtype-specific inhibition of calcium currents. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1994; 349: R13.

    Google Scholar 

  30. Berrow N, Campbell V, Fitzgerald E, Brickley K, Dolphin AC. Antisense depletion of β-subunits modulates the biophysical and pharmacological properties of neuronal calcium channels. J. Physiol. 1995; 482: 481–491.

    PubMed  CAS  Google Scholar 

  31. Hofmann F, Biel M, Flockerzi VI. Molecular basis for Ca2+ channel diversity. Ann. Rev. Neurosci. 1994; 17: 399–418.

    Article  PubMed  CAS  Google Scholar 

  32. Dolphin AC, Scott RH. Calcium channel currents and their inhibition by (-)-baclofen rat sensory neurones: modulation by guanine nucleotides. J. Physiol. 1987; 386: 1–17.

    PubMed  CAS  Google Scholar 

  33. Campbell V, Berrow NS, Dolphin AC. GABAB receptor modulation of Ca2+ currents in rat sensory neurones by the G protein Go: Antisense oligonucleotide studies. J. Physiol. 1993; 470: 1–11.

    PubMed  CAS  Google Scholar 

  34. Menon-Johansson AS, Berrow NS, Dolphin AC. Go transduces GABAB receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurones. Pflugers Arch. 1993; 425: 325–333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rasenick, M.M., Caron, M.G., Dolphin, A.C., Kobilka, B.K., Schultz, G. (1995). Receptor-G Protein-Effector Coupling: Coding and Regulation of the Signal Transduction Process. In: Cuello, A.C., Collier, B. (eds) Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7218-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7218-8_10

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7220-1

  • Online ISBN: 978-3-0348-7218-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics