Skip to main content

Neuroethological Aspects of Avian Orientation

  • Chapter
Book cover Orientation in Birds

Part of the book series: Experientia Supplementum ((EXS,volume 60))

Summary

Sensory information, which may be essential for the complex process of orientation of birds, is described in this article. The use of vibrational, visual, chemical, olfactory, magnetic cues and their receptive mechanisms, as far as they are known, are explained. Special reference is given to the behavioral and physiological aspects of magnetic sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Able, K. P. The role of polarized light in the migratory orientation of white-throated sparrows (Zonotrichia albicollis). Nature 299 (1982) 550–551.

    Google Scholar 

  • Able, K. P. Skylight polarization patterns and the orientation of migratory birds. J. Exp. Biol. 141 (1989) 241–256.

    Google Scholar 

  • Able, K. P., and Able, M. A. Calibration of the magnetic compass of a migratory bird by celestial rotation. Nature 547 (1990) 378–380.

    Google Scholar 

  • Alerstam, T. Bird migration across a strong magnetic anomaly. J. Exp. Biol. 130 (1987) 63–86.

    Google Scholar 

  • Aoki, C., and Siekevietz, P. Ontogenetic changes in the cyclic adenosine 3’,5/-monophosphate- stimulateable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP 2). J. Neuroscience 5 (1985) 2465–2483.

    Google Scholar 

  • Bang, B. G., and Wenzel, B. M. Nasal cavity and olfactory system, in: Form and function in birds, vol. 3. pp. 195–225. Eds A. S. King and J. McLelland. Academic, London 1985.

    Google Scholar 

  • Baylor, D. A. Photoreceptor signals and vision. Investigative Opthalmology and Visual Sci. 28 (1987) 34–49.

    Google Scholar 

  • Beason, R. C., and Brennan, W. J. Natural and induced magnetization in the bobolink, Dolichonyx oryzivorus (Aves: Icteridae). J. Exp. Biol. 725 (1986) 49–56.

    Google Scholar 

  • Beason, R. C., and Semm, P. Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neuroscience Letters 80 (1987) 229–234.

    Google Scholar 

  • Beason, R. C., Deutschlander, M., Williams, K., and Fagan, K. Orientation of magnetized bobolinks (Dolichonyx oryzivorus). Abstr. Anim. Behav. Soc. 25 (1990) 177.

    Google Scholar 

  • Bingman, V. P. Magnetic field orientation of migratory Savannah sparrows with different first summer experience. Behaviour 87 (1983) 43–53.

    Google Scholar 

  • Bingman, V. P., Bagnoli, P., Ioale’, P., and Casini, G. Homing behavior of pigeons after telencephalic ablation. Brain Behav. Evol. 24 (1984) 94–108.

    Google Scholar 

  • Bingman, V. P., Ioale’ P., Casini, G., and Bagnoli, P. Hippocampal ablated homing pigeons show a persistent impairment in the time taken to return home. J. Comp. Physiol. 163 (1988) 559–563.

    Google Scholar 

  • Binkley, Kluth, E., and Menaker, M. Pineal function in sparrows. Orcadian rhythms and body temperature. Science 774 (1971) 311–314.

    Google Scholar 

  • Blomme, C. G., Parker, G. H., and Persinger, M. A. Operant detection of extremely low frequency magnetic fields by the domestic pigeon Columbia livia. Bird Behav. 8 (1990) 73–78.

    Google Scholar 

  • Bookman, M. A. Sensitivity of the homing pigeon to an earth-strength magnetic field. Nature 267 (1977) 340–342.

    Google Scholar 

  • Bubien-Waluszewska, A. The cranial nerves, in: Form and function in birds, vol. 2. pp. 385–438. Eds A. S. King and J. McLelland. Academic, NY 1981.

    Google Scholar 

  • Burkhardt, D., and Maier, E. The spectral sensitivity of a passerine bird is highest in the UV. Naturwissenschaften 76 (1989) 82–83.

    Google Scholar 

  • Califord, M. B., and Piddington, R. W. Avian interaural canal enhances interaural delay. J. Comp. Physiol. 762 (1988) 503–510.

    Google Scholar 

  • Carr, C. E., and Konishi, M. Axonal delay lines for time measurement in the owl’s brainstem. Proc. Natl. Acad. Sci. 85 (1988) 8311–8315.

    Google Scholar 

  • Chicz-DeMet, A., Chics-DeMet, E., Wu, H., Coopersmith, R., and Leon, M. Earth-strength magnetic fields selectively alter activity of the pineal gland and hippocampus. Neuroscience Abstract 756 (1988) 17.

    Google Scholar 

  • Clark, L., and Smeraski, C. A. Seasonal shifts in odor acuity by Starlings. J. Exp. Zool. 255 (1990) 22–29.

    Google Scholar 

  • Coemans, M. A. J. M., Vos Han., J. J., and Nuboer, J. F. W. No evidence for polarization sensitivity in the pigeon. Naturwissenschaften 77 (1990) 138–142.

    Google Scholar 

  • Cremer-Bartels, G., Krause, K., and Küchle, H. K. Influence of low magnetic-field-strength variations on the retina and pineal gland of quails and humans. Graefe’s Arch. Clin. Exp. Ophthalmol. 220 (1983) 248–252.

    Google Scholar 

  • Cremer-Bartels, G., Krause, K., Mitoskas, G., and Brodersen, G. Magnetic field of the earth as additional Zeitgeber for endogeneous rhythms? Naturwissenschaften 77 (1984) 567–574.

    Google Scholar 

  • Cowan, M. E., Adamson, L., and Powell, T. P. S. An experimental study of the avian visual system. J. Anat. 95 (1961) 545–563.

    Google Scholar 

  • D’Arms, E., and Griffin, D. R. Balloonists’ reports of sounds audible to migrating birds. Auk 89 (1972) 269–279.

    Google Scholar 

  • Delius, J., Perchard, R., and Emmerton, J. Polarized light discrimination by pigeons and an electroretinographic correlate. J. Comp. Physiol. Psychol. 20 (1976) 560–571.

    Google Scholar 

  • Demaine, C., and Semm, P. The avian pineal gland as an independent magnetic sensor. Neurosci. Lett. 62 (1985) 119–122.

    Google Scholar 

  • Demaine, C., and Semm, P. Magnetic fields abolish nycthemeral rhythmicity of responses of Purkinje cells to the pineal hormone melatonin in the pigeon’s cerebellum. Neuroscience Letters 72 (1986) 158–162.

    Google Scholar 

  • Duijm, M. On the position of the ribbon-like central area in the eyes of some birds. Archiv. Neerland. Zool. 13 (1958) 128–145.

    Google Scholar 

  • Edwards, H. H., Schnell, G. D., DuBois, R. L., and Hutchison, V. H. Natural and induced remanent magnetism in birds. Auk (1991) in press.

    Google Scholar 

  • Emmerton, J., and Delius, J. D. Wavelength discrimination in the “visible” and ultraviolet spectrum by pigeons. J. Comp. Physiol. 141 (1980) 47–52.

    Google Scholar 

  • Emmerton, J., and Remy, M. The pigeon’s sensitivity to ultraviolet and “visible” light. Experientia 19 (1983) 1161–1163.

    Google Scholar 

  • Foa, A., and Saviozzi, G. Effects of exogenous melatonin on sun-compass orientation of homing pigeons. J. Biol. Rhythms 5 (1990) 17–24.

    Google Scholar 

  • Gaston, S., and Menaker, M. Pineal function. The biological clock in the sparrow. Science 160 (1968) 1125–1127.

    Google Scholar 

  • Goldsmith, R. H. Hummingbirds see near ultraviolet light. Science 207 (1980) 786–788.

    Google Scholar 

  • Goldsmith, T. H., Collins, J. S., and Licht, S. The cone oil droplets of avian retinas. Vision Research 24 (1984) 1661–1671.

    Google Scholar 

  • Gould, J. L. The map sense of pigeons. Nature 296 (1982) 205–211.

    Google Scholar 

  • Graber, R. R. Nocturnal migration in Illinois - different points of view. Wilson Bull. 80 (1968) 36–71.

    Google Scholar 

  • Graber, R. R., and Cochran, W. W. An audio technique for the study of nocturnal migration of birds. Wilson Bull. 77 (1959) 220–236.

    Google Scholar 

  • Graber, R. R., and Cochran, W. W. Evaluation of an aural record of nocturnal migration. Wilson Bull. 72 (1960) 253–273.

    Google Scholar 

  • Granit, O. Beiträge zur Kenntnis des Gehörsinnes der Vögel. Ornis Fennica 18 (1941) 49–71.

    Google Scholar 

  • Griffin, D. R. The audibility of frog choruses to migrating birds. Anim. Behav. 24 (1976) 421–427.

    Google Scholar 

  • Griffin, D. R., and Hopkins, C. R. Sounds audible to migrating birds. Anim. Behav. 22 (1976) 672–678.

    Google Scholar 

  • Grubb, T. C., Jr. Smell and foraging in shearwaters and petrels. Nature 237 (1972) 404–405.

    Google Scholar 

  • Grubb, T. C., Jr. Olfactory navigation to the nesting burrow in Leach’s petrel Oceanodroma leucorrhoa. Anim. Behav. 22 (1974) 192–202.

    Google Scholar 

  • Gruter, M., and Wiltschko, R. Pigeon homing: The effect of local experience on initial orientation and homing success. Ethology 84 (1990) 239–255.

    Google Scholar 

  • Gwinner, E., and Benzinger, I. Synchronization of a circadian rhythm in pineloctomized European starlings by daily injections of melatonin. J. Comp. Physiol. 727 (1978) 209–213.

    Google Scholar 

  • Helbig, A. J. Depolarization of natural skylight disrupts orientation of an avian nocturnal migrant. Experientia 46 (1990) 755–758.

    Google Scholar 

  • Helbig, A. J., and Wiltschko, W. The skylight polarization patterns at dusk affect the orientation behavior of blackcaps, Sylvia atricapilla. Naturwissenschaften 76 (1989) 227–229.

    Google Scholar 

  • Henton, W. W. Conditional suppression to odorous stimuli in pigeons. J. Exp. Anal. Behav. 72 (1969) 175–186.

    Google Scholar 

  • Holtkamp, E. Neurobiologische Untersuchungen am Nervus ophthalmicus des Zebrafinken (Taeniopygia guttata) unter besonderer Berücksichtigung seiner Magnetgeldempfindlichkeit. Diplomarbeit thesis (1989) U. Frankfurt.

    Google Scholar 

  • Hudspeth, A. J. The cellular basis of hearing: the biophysics of hair cells. Science 230 (1985) 745–752.

    Google Scholar 

  • Hutchison, L. V., and Wenzel, B. M. Olfactory guidance in foraging by procellariiforms. Condor 82 (1980) 314–319.

    Google Scholar 

  • Hutchison, L. V., Wenzel, B. M., Stager, K. E., and Tedford, B. L. Further evidence for olfactory foraging by Sooty Shearwaters and Northern Fulmars, in: Proc. Pacific Seabird Group Symp. Marine Birds. Can. Wildl. Serv., Spec. Publ, pp. 72–77. CWS, Ottawa 1984.

    Google Scholar 

  • Kalmijn, A. J.: The electric sense of sharks and rays. J. Exp. Biol. 55 (1971) 371–383.

    Google Scholar 

  • Karten, H. J. Projections of the optic tectum in the Pigeon (Columba livia). Anat. Ree. 151 (1965) 369.

    Google Scholar 

  • Kirmse, W., Kirmse, R., and Ludwig, M. Visuo-vestibulomoter interaction in birds - a revaluation paradigm of orientation. Zool. Jb. Physiol. 93 (1989) 505–517.

    Google Scholar 

  • Kirschvink, J. L., and Gould, J. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 73 (1981) 181–201.

    Google Scholar 

  • Klinke, R. Avian hearing mechanisms and achievements from infrasound to mid-frequency range. Proc. XX Intern. Ornithol. Congr. (1991) in press.

    Google Scholar 

  • Klump, G. M., Windt, W., Curio, E. The great tit’s (Parus major) auditory resolution in azimuth. J. Comp. Physiol. 755 (1986) 383–390.

    Google Scholar 

  • Knudsen, E. I. Auditory and visual maps of space in the optic tectum of the owl. J. Neuroscience 2 (1982) 1177–1194.

    Google Scholar 

  • Knudsen, E. I., and Konishi, M. Mechanisms of sound localization in the barn owl (Tyto alba). J. Comp. Physiol. 735 (1979) 13–21.

    Google Scholar 

  • Knudsen, E. I., and Konishi, M. Monaural occlusion shifts receptive-field locations of auditory midbrain units in the owl. J. Neurophysiol. 44 (1980) 687–695.

    Google Scholar 

  • Knudsen, E. I., Konishi, M., and Pettigrew, J. D. Receptive fields of auditory neurons in the owl. Science 198 (1917) 1278–1280.

    Google Scholar 

  • Konishi, M. Spatial receptive fields in the auditory system, in: Comparative physiology of sensory systems. Eds L. Bolis, R. D. Keynes, and S. H. P. Maddrell. pp. 103–113. Cambridge, London 1984.

    Google Scholar 

  • Kreithen, M. L. The sensory world of the homing pigeon, in: Neural mechanisms of Behavior in the Pigeon, Eds A. M. Granda and J. H. Maxwell, pp. 21–33. Plenum Pub., NY 1979.

    Google Scholar 

  • Kuhn, A., Muller, C. M., Lepplsack, H. J., and Schwartzkopff, J. Heartrate conditioning used for determination of auditory threshold in the starling. Naturwissenschaftern 69 (1982) 245.

    Google Scholar 

  • Kühne, R., and Lewis, B. External and middle ears, in: Form and Function in Birds, vol. 3. Eds A. S. King and J. McLelland. pp. 227–271. Academic, London 1985.

    Google Scholar 

  • Leask, M. J. M. A physiochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267 (1911) 144–145.

    Google Scholar 

  • Leucht, T. Magnetic effects on tail-fin melanophores of Xanopus laevis tadpoles in vitro. Naturwissenschaften 74 (1987) 441–443.

    Google Scholar 

  • Lewald, J. The acuity of sound localization in the pigeon (Columba livid). Naturwissenschaften 74 (1987) 296–297.

    Google Scholar 

  • Maffei, L., Meschini, E., and Papi, F. Pineal body and magnetic sensitivity: homing in pinealectomized pigeons under overcast skies. Z. Tierpsychol. 60 (1983) 151–156.

    Google Scholar 

  • Mai, K., and Semm, P. 2-deoxyglucose utilization during magnetic stimulation in the pigeon. J. Hirnforschung 31 (1989) 331–336.

    Google Scholar 

  • Martin, G. R. Schematic eye models in vertebrates, in: Progress in Sensory Physiology, vol. 4. Ed. D. Ottoson. Springer-Verlag, New York 1983.

    Google Scholar 

  • Martin, G. R. Eye. In: Form and Function in birds, vol. 3. Eds A. S. King and J. McLelland. pp. 311–373. Academic, London 1985.

    Google Scholar 

  • Martin, G. R. Aspects of avian vision and orientation. Proc. XX Intern. Ornithol. Congr. (1991) in press.

    Google Scholar 

  • Mariani, A. P., and Leure-DuPree, A. E. Photoreceptors and oil droplet colors in the red area of the pigeon retina. J. Comp. Neurol. 72 (1978) 821–837.

    Google Scholar 

  • Meier, R. E. Autoradiographic evidence for a direct retinohypothalamic projectionin the avian brain. Brain Res. 53 (1973) 417.

    Google Scholar 

  • Moore, B. R. Is the pigeon’s map geomagnetic? Nature 25 (1980) 69–70.

    Google Scholar 

  • Moore, F. R. Sunrise, skylight polarization, and the early morning orientation of night- migrating warblers. Condor 88 (1986) 493–498.

    Google Scholar 

  • Moore, F. R. and Phillips, J. B. Sunset, skylight polarization and the migratory orientation of yellow-rumped warblers, Dendroica coronata. Anim. Behav. 36 (1988) 1770–1778.

    Google Scholar 

  • Morris, V. B. and Shorey, C. D. An electromicroscope study of types of receptor in the chick retina. J. Comp. Neurol. 722 (1967) 313–340.

    Google Scholar 

  • Norberg, R. A. Skull asymmetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funereus (Linné). Phil. Trans. R. Soc. 282B (1978) 325–410.

    Google Scholar 

  • Orth, G., and Wiltschko, W. Die Orientierung von Wiessenpiepern (Anthus pratensis L). Verh. Dtsch. Zool. Ges. (Bremen) 1981 (1981) 252.

    Google Scholar 

  • Ottosson, U., Sandberg, R., and Pettersson, J. Orientation cage and release experiments with migratory wheatears (Oenanthe oenanthe) in Scandinavia and Greenland: The importance of visual cues. Ethology 86 (1990) 57–90.

    Google Scholar 

  • Papi, F. Olfaction and homing in pigeons: Ten years of experiments. In: Avian Navigation. Eds F. Papi and H. G. Wallraff, pp. 149–159. Springer-Verlag, Berlin 1982.

    Google Scholar 

  • Papi, F. Pigeon navigation: solved problems and open questions. Monitore Zool. Ital. (N.S.) 20 (1986) 471–517.

    Google Scholar 

  • Papi, F. Olfactory navigation in birds. Experientia 46 (1990) 352–363.

    Google Scholar 

  • Papi, F. and Casini, G. Pigeons with ablated pyriform cortex home from familiar but not from unfamiliar sites. Proc. Nat. Acad. Sci. 87 (1990) 3783–3787.

    Google Scholar 

  • Papi, F., Maffei, L., and Giongo, F. Pineal body and bird navigation: New experiments on pinealectomized pigeons. Z. Tierpsychol. 67 (1985) 257–268.

    Google Scholar 

  • Parrish, J., Ptacek, J., and Will, K. L. The detection of near-ultraviolet light by migratory and nonmigratory birds. Auk 101 (1984) 53–58.

    Google Scholar 

  • Payne, R. S. Acoustic location of prey by barn owls (Tyto alba). J. Exp. Biol. 54 (1971) 535–573.

    Google Scholar 

  • Perlman, A. L., and Hughes, C. P. Functional role of the efferents to the avian retina. II. Effects of reversible cooling of the isthmo-optic nucleus. J. Comp. Neurol. 766 (1976) 123–132.

    Google Scholar 

  • Pearson, R. The avian brain. Academic, NY 1972.

    Google Scholar 

  • Phillips, J. B. Specialized visual receptors respond to magnetic field alignment in the blowfly (Calliphora vicina) Soc. Neuroscience Abstr. 13 (1987) 397.

    Google Scholar 

  • Quine, D., and Konishi, M. Absolute frequency discrimination in the barn owl. J. Comp. Physiol. 93 (1974) 347–360.

    Google Scholar 

  • Reuss, S., and Semm, P. Earth-strength magnetic fields inhibit melatonin synthesis in the pigeon pineal gland. Naturwissenschaften 74 (1987) 38–39.

    Google Scholar 

  • Rieke, G. K., and Wenzel, B. M. Forebrain projections of the pigeon olfactory bulb. J. Morph. 158 (1978) 41–55.

    Google Scholar 

  • Schermuly, L., and Klinke, R. Origin of infrasound sensitive neurones in the papilla basilaris of the pigeon: an HRP study. Hearing Res. 48 (1990) 69–78.

    Google Scholar 

  • Schmidt-Koenig, K. Experimentelle Einflussnahme auf die 24-Stunden-Periodik bei Brieftauben und deren Auswirkung unter besonderer Berücksichtigung des Heimfindevermögens. Z. Tierpsychol. 75 (1958) 301–331.

    Google Scholar 

  • Schmidt-Koenig, K. Bird navigation: has olfactory orientation solved the problem? Quart. Rev. Biol. 62 (1987) 31–47.

    Google Scholar 

  • Schulten, K., and A. Windemuth. Model for a physiological magnet compass, in: Biophysical Effects of Steady Magnetic Fields. Eds G. Marat, J. Kiepenheuer, and N. Boccara. pp. 167–172. Springer-Verlag, Berlin 1986.

    Google Scholar 

  • Schwartzkopff, J. Structure and function of the ear and of the auditory brain areas in birds, in: Hearing mechanisms in vertebrates. Eds A. V. S. de Reuck and J. Knight, pp. 41–59. Little, Brown, Boston 1968.

    Google Scholar 

  • Semm, P., and Beason, R. C. Responses to small magnetic variations by the trigeminal system of the Bobolink. Brain Res. Bull. 25 (1990) 735–740.

    Google Scholar 

  • Semm, P., and Beason, R. C. Two different magnetic systems in avian orientation. Proc. XX Intern. Ornithol. Congr. (1991) in press.

    Google Scholar 

  • Semm, P., and Demaine, C. Electrical responses to direct and indirect photic stimulation of the pineal gland in the pigeon. J. Neural Trans. 58 (1983) 281–289.

    Google Scholar 

  • Semm, P., and Demaine, C. Neurophysiological properties of magnetic cells in the visual system of the pigeon. J. Comp. Physiol. 159 (1986) 619–625.

    Google Scholar 

  • Semm, P., Schneider, T., Vollrath, L., and Wiltschko, W. Magnetic sensitive pineal cells in pigeons, in: Avian Navigation. Eds F. Papi and H. G. Wallraff. pp. 329–337. Springer-Ver-lag, Berlin 1982.

    Google Scholar 

  • Semm, P., Nohr, D., Demaine, C., and Wiltschko, W. Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J. Comp. Physiol. 755 (1984) 283–288.

    Google Scholar 

  • Semm, P. Bretschneider, H., Dilla, K., and Wiltschko, W. Interaction between magnetic stimuli and annual activity in birds: behavioral and physiological investigations. Comparative Physiol. 3 (1987) 171–182.

    Google Scholar 

  • Shumake, S. A., Smith J. C., and Tucker, D. Olfactory intensity-difference thresholds in the pigeon. J. Comp. Physiol. Psychol. 67 (1969) 64–69.

    Google Scholar 

  • Smith, C. A. Inner ear. in: Form and function in birds, vol. 3. Eds A. S. King and J. McLelland. pp. 273–310. Academic Press, NY 1985.

    Google Scholar 

  • Smith, S. A., and Paselk, R. A. Olfactory sensitivity of the Turkey Vulture (Cathartes aura) to three carrion-associated odorants. Auk 103 (1986) 586–592.

    Google Scholar 

  • Snyder, A. W., Laughlin, S. B., and Stavenga, D. G. Information capacity of eyes. Vision Res. 77 (1977) 1163–1175.

    Google Scholar 

  • Snyder, G. K., and Peterson, T. T. Olfactory sensitivity in the black-billed magpie and in the pigeon. Comp. Biochem. Physiol. 62 (1979) 921–925.

    Google Scholar 

  • Southern, W. E. Orientation responses of ring-billed gull chicks: A re-evaluation, in: Animal Migration, Navigation, and Homing. Eds K. Schmidt-Koenig and H. G. Wallraff. pp. 59–67. Springer-Verlag, Berlin 1978.

    Google Scholar 

  • Stattelman, A. J., Talbot, R. B., and Coulter, D. B. Olfactory thresholds of pigeons (Columba livia), quail (Colinus virigianus) and chickens (Gallus gallus). Comp. Biochem. Physiol. 50A (1975) 807–809.

    Google Scholar 

  • Stresemann, E. Sauropsida: Aves. in: Handbuch der Zoologie, vol. 7(2). Eds W. Kukenthal and T. Krumbach. pp. 900. W. de Gruyter, Berlin 1934.

    Google Scholar 

  • Tucker, D. Electrophysiological evidence for olfactory function in birds. Nature 207 (1965) 34–36.

    Google Scholar 

  • Ueda, K., Kusunoki, M., Kato, M., Kakizawa, R., Nakamura, T., Yaskawa, K., Koyama, M., and Maeda, Y. Magnetic remanences in migratory birds. J. Yamashina Inst. Ornithol. 14 (1982) 166–170.

    Google Scholar 

  • Walcott, C. Anomalies in the earth’s magnetic field increase the scatter of pigeon vanishing bearings, in: Animal Migration, Navigation, and Homing. Eds K. Schmidt-Koenig and H. G. Wallraff. pp. 143–151. Springer-Verlag, Berlin 1978.

    Google Scholar 

  • Walcott, C. Is there evidence for a magnetic map in homing pigeons? in: Avian Navigation. Eds F. Papi and H. G. Wallraff. pp. 99–108. Springer-Verlag, Berlin 1982.

    Google Scholar 

  • Walcott, C., Gould, J. L., and Kirschvink, J. L. Pigeons have magnets. Science 205 (1919) 1027–1029.

    Google Scholar 

  • Waldvogel, J. A. Olfactory navigation in homing pigeons: Are the current models atmospherically realistic? Auk 104 (1987) 369–379.

    Google Scholar 

  • Waldvogel, J. A. Olfactory orientation by birds. Current Ornithol. 6 (1989) 269–321.

    Google Scholar 

  • Walker, J. C., Walker, D. B., Tambiah, C. R., and Gilmore, K. S. Olfactory and nonolfactory odor detection in pigeons: Elucidation by cardiac acceleration paradigm. Physiol. Behav. 38 (1986) 575–580.

    Google Scholar 

  • Wallraff, H. G. Migration and navigation in birds: A present-state survey, in: Mechanisms of migration in fishes. Eds J. D. McCleave, G. P. Arnold, J. J. Dodson, and W. H. Neill. pp. 509–544. Plenum Press, NY 1984.

    Google Scholar 

  • Wallraff, H. G., and Neumann, M. F. Contribution of olfactory navigation and non-olfactory pilotage to pigeon homing. Behav. Ecol. Sociobiol. 25 (1989) 293–302.

    Google Scholar 

  • Warchol, M. E., and Dallos, P. Neural responses to very low-frequency sound in the avian nucleus. J. Comp. Physiol. 166 (1989) 83–95.

    Google Scholar 

  • Wenzel, B. M. Olfactory perception in birds, in: Olfaction and Taste. Ed T. Hayashi. Pergamon, Oxford 1967.

    Google Scholar 

  • Wenzel, B. M. Olfactory prowess of the kiwi. Nature 220 (1968) 1133–1134.

    Google Scholar 

  • Wenzel, B. M. Olfactory sensation in the kiwi and other birds. Ann. N.Y. Acad. Sci. 188 (1971) 183–193.

    Google Scholar 

  • Wenzel, B. M. Chemoreception in seabirds. in: Behavior of marine animals: Current perspectives in research, marine birds, vol. 4. Eds J. Burger, B. L. Olla, and H. E. Winn. Plenum, N.Y. 1980.

    Google Scholar 

  • Wenzel, B. M. Olfactory abilities of birds. Proc. XX Intern. Ornithol. Congr. (1991) in press.

    Google Scholar 

  • Wenzel, B. M., and Rausch, L. J. Does the olfactory system modulate affective behavior in the pigeon ? Ann. N.Y. Acad. Sci. 220 (1977) 314–330.

    Google Scholar 

  • Wenzel, B. M., and Sieck, M. H. Olfactory perception and bulbar electrical activity in several avian species. Physiol. Behav. 9 (1972) 287–294.

    Google Scholar 

  • Wiltschko, W. Uber den Einfluss statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z. Tierpsychol. 25 (1968) 537–558.

    Google Scholar 

  • Wiltschko, W. Further analysis of the magnetic compass of migratory birds, in: Animal Migration, Navigation, and Homing. Eds K. Schmidt-Koenig and W. T. Keeton. pp. 50–58. Springer-Verlag, Berlin 1978.

    Google Scholar 

  • Wiltschko, R. Die Sonnenorientierung der Vogel. 2. Entwicklung des Sonenkompass und sein Stellenwert im Orientierungssystem. J. Ornithol. 722 (1981) 1–22.

    Google Scholar 

  • Wiltschko, W. Compasses used by birds. J. Comp. Biochem. Physiol. 76 (1983) 709–717.

    Google Scholar 

  • Wiltschko, W., and Beason, R. C. Magneteffekte bei der Heimorientierung von Brieftauben. Verh. Dtsch. Zool. Ges., Frankfurt 1990 (1990) in press.

    Google Scholar 

  • Wiltschko, W., and Wiltschko, R. Magnetic compass of European robins. Science 176 (1912) 62–64.

    Google Scholar 

  • Wiltschko, W., and Wiltschko, R. Disorientation of unexperienced young pigeons after transportation in total darkness. Nature, London 291 (1981) 433–434.

    Google Scholar 

  • Wiltschko, W., and Wiltschko, R. Magnetic orientation in birds. Current Ornithology 5 (1988) 67–121.

    Google Scholar 

  • Wiltschko, W., and Wiltschko, R. Pigeon homing: Olfactory orientation-a paradox. Behav. Ecol. Sociobiol. 24 (1989) 163–173.

    Google Scholar 

  • Wiltschko, W., and Wiltschko, R. Magnetic orientation and celestial cues in migratory orientation. Experientia 46 (1990) 342–352.

    Google Scholar 

  • Wiltschko, R., Wiltschko, W., and Kowalski, U. Pigeon homing: An unexpected effect of treatment with a local anaesthetic on initial orientation. Anim. Behav. 57 (1989) 1050–1052.

    Google Scholar 

  • Wiltschko, W., Wiltschko, R., and Walcott, C. Pigeon homing: different effects of olfactory deprivation in different countries. Behav. Ecol. Sociobiol. 21 (1987) 333–342.

    Google Scholar 

  • Wiltschko, W., Daum, P., Fergenbauer-Kimmel, A., and Wiltschko, R. The development of the star compass in Garden Warblers, Sylvia borin. Ethology 74 (1987) 285–292.

    Google Scholar 

  • Wiltschko, W., Nohr, D., Füller, E., and Wiltschko, R. Pigeon homing: the use of magnetic information in position finding, in: Biophysical effects of Steady Magnetic fields. Eds G. Maret, N. Boccara, J. Kiepenheuer, pp. 154–162. Springer, Berlin 1986.

    Google Scholar 

  • Wiltschko, W., Wiltschko, R., Grüter, M., and Kowalsky, U. Pigeon homing: early experience determines what factors are used for navigation. Naturwissenschaften 74 (1987) 196–197.

    Google Scholar 

  • Yodlowski, M. L., Kreithen, M. L., and Keeton, W. T. Detection of atmospheric infrasound by homing pigeons. Nature, London 265 (1977) 725–726.

    Google Scholar 

  • Yorke, E. Sensitivity of pigeons to small magnetic field variations. J. Theor. Biol. 89 (1981) 533–537.

    Google Scholar 

  • Young, S. R., and Martin, G. R. Optics of retinal oil droplets. A model of light collection and polarization detection in the avian retina. Vision Res. 24 (1984) 129–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Beason, R.C., Semm, P. (1991). Neuroethological Aspects of Avian Orientation. In: Berthold, P. (eds) Orientation in Birds. Experientia Supplementum, vol 60. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7208-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7208-9_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7210-2

  • Online ISBN: 978-3-0348-7208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics