Skip to main content

Tauberian-Type Results for Convolution of Sequences

  • Chapter
General Inequalities 5

Abstract

Copson (1970) proved a theorem expressible as: If p is a finite strictly decreasing positive sequence, if a is a real semi-infinite bounded sequence, and if a*p is monotone, then a is convergent (the monotonicity of a*p is equivalent to a linear inequality on the an). Later Borwein and Russell independently published necessary and sufficient conditions for the conclusion, related to the distribution of the zeros of the generating power series (or polynomial) p(z). Here we use bi-infinite sequences and a sequence space λ with the property (u∈λ, v∈ℓ1) ⇒ u*v ∈ λ, and we ask for a theorem of the form a*p ∈ λ ⇒ a ∈ λ, provided that the tauberian condition a ∈ ℓ holds. While (for λ = bv) this already includes all previous results, the theorem can be further improved for semi-infinite sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Borwein, Convergence criteria for bounded sequences. Proc.Edin.Math.Soc. (2) 18 (1972), 99–103.

    Article  Google Scholar 

  2. E.T. Copson, On a generalisation of monotonic sequences. Proc. Edin. Math. Soc. (2) 17 (1970), 159–164.

    Article  Google Scholar 

  3. H.R. Pitt, Mercerian theorems. Proc.Camb.Phil.Soc. 34 (1938), 510–520.

    Article  Google Scholar 

  4. H.R. Pitt, Tauberian Theorems. Oxford University Press, 1958.

    Google Scholar 

  5. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Springer-Verlag, Berlin: 4. Auflage, 1970.

    Book  Google Scholar 

  6. F. Riesz and B. Sz.-Nagy, Functional Analysis. Ungar, New York, 1971.

    Google Scholar 

  7. D.C. Russell, On bounded sequences satisfying a linear inequality. Proc.Edin.Math.Soc. (2) 19 (1974), 11–16.

    Article  Google Scholar 

  8. N. Wiener, Tauberian theorems. Ann.of Math. 31 (1932), 1–100.

    Article  Google Scholar 

  9. N. Wiener and H.R. Pitt, On absolutely convergent Fourier-Stieltjes transforms. Duke Math.J. 4 (1938), 420–436. Added June 1986:The reader should also see (these Proc.)

    Article  Google Scholar 

  10. Matts Essén, Tauberian theorems, convolutions and some results of D.C. Russell. General Inequalities 5 (Birkhauser, ed. W.Walter).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Russell, D.C. (1987). Tauberian-Type Results for Convolution of Sequences. In: Walter, W. (eds) General Inequalities 5. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik Série internationale d’Analyse numérique, vol 80. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7192-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7192-1_8

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7194-5

  • Online ISBN: 978-3-0348-7192-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics