Skip to main content

On Precision Sets of Interpolation Projectors

  • Chapter
Multivariate Approximation Theory II

Abstract

Let (X,d) be a compact metric space and let C(X) denote the real Banach algebra of all continuous functions defined on X. For any continuous projector P on C(X) its precision set prec(P) is defined by

$$ prec(P) = \{ y \in X:\hat yP = \hat y\} $$

where \( \hat{y} \in C(X)' \)' denotes the point evaluation at y, i. e., the Dirac measure with carrier {y} :

$$ \hat y(f) = f(y)(f \in C(X)). $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. BIRKHOFP: The algebra of multivariate interpolation. In: “Constructive approaches to mathematical models” (Eds.: C.W. Coffman and G. Fix). Academic Press (1979), New York, pp. 347–363.

    Google Scholar 

  2. E. W. CHENEY: Projection operators in approximation theory. In: “Studies in functional analysis” (Ed.: R.G. Bartle). The mathematical association of America (1980), Washington, pp. 50–80.

    Google Scholar 

  3. E. W. CHENEY and W.J. GORDON: Bivariate and multivariate interpolation with noncommutative projectors. In: “Linear spaces and approximation” (Eds.: P.L. Butzer and B.Sz. Nagy), ISNM 40 (1977), pp. 381–587.

    Google Scholar 

  4. F.J. DELVOS: d-variate Boolean interpolation. J. of Approximation Theory 34 (1982), pp. 99–114.

    Article  MathSciNet  MATH  Google Scholar 

  5. F.J. DELVOS and H. POSDORF: Generalized Biermann interpolation. Resultate der Mathematik (1982), pp.

    Google Scholar 

  6. W.J. GORDON: Distributive lattices and the approximation of multivariate functions. In: “Approximation with special emphasis on spline functions” (Ed.: I.J. Schoenberg). Academic Press (1969), New York, pp. 225–277.

    Google Scholar 

  7. W.J. GORDON and J.A. WIXOM: Pseudo-harmonic interpolation on convex domains. SIAM J. Numer. Anal. 11 (1974), pp. 909–933.

    Article  MathSciNet  MATH  Google Scholar 

  8. W.J. GORDON and J.A. WIXOM: Shephard’s method of “metric interpolation” to bivariate and multivariate interpolation. Mathematics of computation 32 (1978), PP. 253–264.

    MathSciNet  MATH  Google Scholar 

  9. P. LANCASTER: Composite methods for generating surfaces. In: “Polynomial and spline approximation” (Ed.: B.N. Sahney). D. Reidel Publishing Company (1979), pp. 91–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Delvos, F.J., Schempp, W. (1982). On Precision Sets of Interpolation Projectors. In: Schempp, W., Zeller, K. (eds) Multivariate Approximation Theory II. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 61. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7189-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7189-1_9

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7191-4

  • Online ISBN: 978-3-0348-7189-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics