Skip to main content

Minimal Projections and Near-Best Approximations by Multivariate Polynomial Expansion and Interpolation

  • Chapter
Multivariate Approximation Theory II

Abstract

If a multivariate function f in a space X is approximated by a function fN in a subspace Y, then fN is near-best within a relative distance ρ according to the definition of MASON [1] if

$$ {\text{||f - }}{{{\text{f}}}^{{\text{N}}}}{\text{||}}{\text{(1 + }}\rho {\text{)}}.{\text{||f - }}{{{\text{f}}}^{{\text{B}}}}{\text{||}} $$
(1)

where fB is a best approximation and ∥. ∥ is a chisen norm on X. Now for any projection P of f in X to Pf in Y (i.e. a bounded, linear, idempotent mapping of X into Y), it follows (see [2]) that

$$ \parallel \text{f} - \text{Pf}\parallel \, \leqslant (1\, + \parallel \text{P}\parallel ).\parallel \text{f} - \text{f}^\text{B} \parallel $$
(2)

Hence Pf is automatically a near-best approximation, and ∥P∥ measures the relative distance from a best approximation. A projection for which ∥P∥ is smallest is termed a “minimal projection”. Note that “near-best” is not a relevant term unless ρ in (1) or ∥P∥ in (2) is suitably small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mason, J.C, Orthogonal polynomial approximation methods in numerical analysis. In: “Approximation Theory”, A. Talbot (Ed.), Academic Press. London, 1970, pp 7–33.

    Google Scholar 

  2. Cheney, E.W. and Price, K.H. “Minimal projections”. Ibid pp 261–290.

    Google Scholar 

  3. Gunning, R.C, and Rossi, H. “Analytic functions of several complex variables”, Prentice-Hall, New Jersey, 1965.

    MATH  Google Scholar 

  4. Mason, J.C. Near-best multivariate approximation by Fourier series, Chebyshev series, and Chebyshev interpolation. J. of Approx. Th. 28 (1980), 349–358.

    Article  MATH  Google Scholar 

  5. Geddes, K.O. and Mason, J.C. Polynomial approximation by projections on the unit circle. SIAM J. Numer. Anal. J 12 (1975), 111–120.

    Article  MathSciNet  Google Scholar 

  6. Mason, J.C. Near-best L and L1 approximations to analytic functions on two-dimensional regions. In: “Multivariate Approximation”, D.C. Handscomb (Ed.), Academic Press, London, 1978, pp 115–135.

    Google Scholar 

  7. Freilich, J.H. and Mason, J.C. Best and near-best L1 approximations by Fourier series and Chebyshev series. J. of Approx. Th. 4 (1971), 183–193.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mason, J.C. Near-best L1 approximations on circular and elliptical contours. J. of Approx. Th. 24 (1978), 330–343.

    Article  MATH  Google Scholar 

  9. Lozinski, S.M. On a class of linear operators. Dokl. Akad. Nauk, SSR 61 (1948), 193–196 (Russian).

    Google Scholar 

  10. Cheney, E.W. “Introduction to Approximation Theory”, McGraw Hill, New York, 1966

    MATH  Google Scholar 

  11. Berman, D.L. On the impossibility of constructing a linear operator furnishing an approximation within the order of the best approximation. Dokl. Akad. Nauk. SSSR (1958), 1 175–1177 (Russian).

    Google Scholar 

  12. Fejer, L. Lebesguesche Konstanten und divergente Fourierreihen. Crelle J. reine angew. Math, 138 (1910), 22–53.

    MATH  Google Scholar 

  13. Dienes, P. “The Taylor Series - an Introduction to the Theory of Functions of a Complex Variable”, Oxford, 1931.

    Google Scholar 

  14. Geddes, K.O. Near-minimax polynomial approximation in an elliptical region. SIAM J. Numer. Anal. 15 (1978), 1225–1233.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lambert, P.V. On the minimum norm property of the Fourier series in L1-spaces. Bull, de la Soc. Math, de Belgique 21 (1969), 370–391.

    MATH  Google Scholar 

  16. Mason, J.C. Minimal L1 projections by Fourier, Taylor, and Laurent series. RMCS Dept. of Maths. Report 82/1 (1982) (submitted for publication).

    Google Scholar 

  17. Ehlich, H. and Zeller, K. Auswertung der Normen von Interpolationsoperatoren. Math. Annalen 164 (1966), 105–112.

    Article  MathSciNet  MATH  Google Scholar 

  18. Powell, M.J.D. On the maximum errors of polynomial approximations defined by interpolation and least squares criteria. Computer J. 9 (1967), 404–407.

    MATH  Google Scholar 

  19. de Boor, C. and Pinkus, A. Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation. J. of Approx. Th. 24 (1978), 289–303.

    Article  MATH  Google Scholar 

  20. Mason, J.C. Near-minimax interpolation by a polynomial in z and z-1 on a circular annulus. IMA J. Numer. Anal. 1 (1981), 359–367.

    Article  MathSciNet  MATH  Google Scholar 

  21. Geddes, K.O. Chebyshev nodes for interpolation on a class of ellipses. In: “Theory of Approximation with Applications”, A. Law and B. Sahney (Eds.), Academic Press, London, 1976, pp 155–170.

    Google Scholar 

  22. Kovari, T. and Pommerenke, Ch. On Faber polynomials and Faber expansions. Math. Z. 99 (1967), 193–206.

    Article  MathSciNet  Google Scholar 

  23. Fejer, L. Interpolation und konforme Abbildung, GÖttinger Nachrichten (1918), 319–331.

    Google Scholar 

  24. Handscomb, D.C. “Methods of Numerical Approximation”, Pergamon, 1966.

    Google Scholar 

  25. Mason, J.C. Recent advances in near-best approximation. In: “Approximation Theory III”, E.W. Cheney (Ed.), Academic Press, 1980, PP 629–636.

    Google Scholar 

  26. Mason, J.C. Some methods of near-minimax approximation using Laguerre polynomials. SIAM J. Numer. Anal, 10 (1973), 470–477.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lewanowicz, S, Properties of some polynomial projections. Bull de I’Acad. Polonaise des Sciences 27 (1978), 727–732.

    MathSciNet  Google Scholar 

  28. Brutman, L. On the Lebesgue function for polynomial interpolation. SIAM J. Numer. Anal. J 15 (1978), 694–704.

    Article  MathSciNet  MATH  Google Scholar 

  29. Trefethen, L. and Gutknecht, M. The Caratheodory-Fejer method for real rational approximation. Numer. Anal. Project Manuscript NA–81–15 (1981), Stanford University.

    Google Scholar 

  30. Ellacott, S.W. and Gutknecht, M.H. The polynomial Caratheodory-Fejer method for Jordan regions. Res. Report 82-02 (1982), Seminar für Angew. Math., E.T.H., Zürich.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Mason, J.C. (1982). Minimal Projections and Near-Best Approximations by Multivariate Polynomial Expansion and Interpolation. In: Schempp, W., Zeller, K. (eds) Multivariate Approximation Theory II. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 61. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7189-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7189-1_20

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7191-4

  • Online ISBN: 978-3-0348-7189-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics