Skip to main content

Abstract

Approximation theorems of Walsh imply that the nonnegative integral powers zn, or the integral powers, form a spanning set for certain spaces of functions on compacta in (C. One may ask how many powers may be omitted in various problems of uniform approximation. The present paper surveys “lacunary” approximation theorems for the following kinds of sets: 1. Closed Jordan regions, 2. Jordan arcs, 3. Jordan curves around the origin. At present the most active area is Müntz-type approximation on arcs, in part because of its relation to the Macintyre conjecture for entire functions with gap power series.

Work begun with support from NSF grant MPS 73–08733 at the University of California, San Diego. Second author supported by a grant from the Netherlands research organization ZWO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bang, T., On quasi-analytiske Funktioner. Thesis, Univ. of Copenhagen, 1946.

    Google Scholar 

  2. Clarkson, J.A. — Erdös, P., Approximation by polynomials. Duke Math. J. 10 (1943), 5–11.

    Article  Google Scholar 

  3. Dixon, M. — Korevaar, J., Approximation by lacunary polynomials. Nederl. Akad. Wetensch. Proc. Ser. A 80 (1977), 176–194.

    Google Scholar 

  4. Dixon, M. — Korevaar, J., Nonspanning sets of powers on curves : analyticity theorem. Submitted for publication.

    Google Scholar 

  5. Erkama, T., Classes non quasi-analytiques et le théorème d’approximation de Müntz. CR. Acad. Sci. Paris Sér. A 283 (1976), 595–597.

    Google Scholar 

  6. Gaier, D., Der allgemeine Lückenumkehrsatz für das Borel-Verfahren. Math. Z. 88 (1965), 410–417.

    Article  Google Scholar 

  7. Hayman, W.K., A mini-gap theorem for Fourier series. Proc. Cambridge Philos. Soc. 64 (1968), 61–66.

    Article  Google Scholar 

  8. Korevaar, J., Approximation on curves by linear combinations of exponentials. In: Approximation Theory (editor G.G. Lorentz). Acad. Press, New York 1973, pp. 387–393.

    Google Scholar 

  9. Korevaar, J., Lacunary forms of Walsh’ approximation theorems. In: Proc. Internat. Conf. on Approx. of Functions (Kaluga 1975). Soviet Acad. of Sci., Moscow 1977, pp. 229–237.

    Google Scholar 

  10. Korevaar, J. — Alexander, H., Approximation on wild Jordan curves. J. London Math. Soc. (2) 13 (1976), 317–322.

    Article  Google Scholar 

  11. Korevaar, J. — Pfluger, P., Spanning sets of powers on wild Jordan curves. Nederl. Akad. Wetensch. Proc. Ser. A 77 (1974), 293–305.

    Google Scholar 

  12. Kovari, T., On the asymptotic paths of entire functions with gap power series. J. Analyse Math. 15 (1965), 281–286.

    Article  Google Scholar 

  13. Kovari, T., A gap theorem for entire functions of infinite order. Michigan Math. J. 12 (1965), 133–140.

    Google Scholar 

  14. Leont’ev, A.F., On the completeness of a system of exponentials on a curve. (Russian). Sibirsk. Mat. Z. 15 (1974), 1103–1114.

    Google Scholar 

  15. Macintyre, A.J., Asymptotic paths of integral functions with gap power series. Proc. London Math. Soc. (3) 2 (1952), 286–296.

    Google Scholar 

  16. Malliavin, P. — Siddiqi, J.A., Approximation polynomiale sur un arc analytique dans le plan complexe. C.R. Acad. Sci. Paris Sér. A 273 (1971), 105–108.

    Google Scholar 

  17. Malliavin, P., — Siddiqi, J.A., Classes de fonctions monogènes et approximation par des sommes d’exponentielles sur un arc rectifiable de C. CR. Acad. Sci. Paris Sér. A 282 (1976), 1091–1094.

    Google Scholar 

  18. Müntz, C.H., Über den Approximationssatz von Weierstrass. In: H.A. Schwarz Festschrift, Berlin 1914, pp. 303–312.

    Google Scholar 

  19. Pavlov, A.I., Growth along curves of entire functions specified by gap power series (Russian). Sibirsk. Mat. Z. 13 (1972), 1169–1181.

    Google Scholar 

  20. Schwartz, L., Étude des sommes d’exponentielles réelles. Actualités Sci. Indust. 959, Hermann, Paris 1943.

    Google Scholar 

  21. Walsh, J.L., Über die Entwicklung einer analytischen Funktion nach Polynomen. Math. Ann. 96 (1927), 430–436.

    Article  Google Scholar 

  22. Walsh, J.L., Über die Entwicklung einer Funktion einer komplexen Veränderlichen nach Polynomen. Math. Ann. 96 (1927), 437–450.

    Article  Google Scholar 

  23. Wermer, J., Nonrectifiable simple closed curve. Advanced problems and solutions, no. 4687. Amer. Math. Monthly 64 (1957), 372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Korevaar, J., Dixon, M. (1978). Lacunary Polynomial Approximation. In: Butzer, P.L., Szökefalvi-Nagy, B. (eds) Linear Spaces and Approximation / Lineare Räume und Approximation. International Series of Numerical Mathematics / Intermationale Schriftenreihe zur Numberischen Mathematik / Sùrie Internationale D’analyse Numùruque, vol 40. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7180-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7180-8_42

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-0979-4

  • Online ISBN: 978-3-0348-7180-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics