Skip to main content

Abstract

During the last ten to fifteen years tremendous progress has been made in the construction of new physico-chemical measuring instruments and in the development of suitable methods of measurement. This is due, to a considerable extent, to the development of electronics. Formerly chemists were largely, if not completely, dependent upon chemical methods of analysis. These are not only tedious and time consuming but also require a considerable quantity of the compound to be analyzed if its chemical structure is to be ascertained. Furthermore a long synthesis often had to be employed to verify the structure of a product which had been isolated. At present, however, by making use of the newest physico-chemical methods, the structure of a chemical substance may be examined quickly and only very small quantities are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Summary

  • B. Axelrod and J. R. Belzile, Isolation of an alkaloid, annuloline, from the roots of Lolium multiflorum, J. Org. Chem. 23, 919 (1958).

    Google Scholar 

  • A. S. Curry, The isolation and detection of ergometrine in toxicological analysis, J. Pharm. Pharmacol. 11, 411 (1959).

    Google Scholar 

  • S. R. Missan, L. L. Ciaccio, W. H. McMullen, H. J. Pazdera, and T. C. Grenfell, Analytical methods for rescinnamine, J. Amer. Pharm. Ass. Sci. Ed. 49, 7 (1960).

    Google Scholar 

  • V. M. Bakshi, Serpentina alkaloids, Indian J. Pharm. 12, 172 (1950).

    Google Scholar 

  • E. B. Dechene, A fluorometric assay of reserpine, J. Amer. Pharm. Assoc. Sci. Ed. 44, 657 (1955).

    Google Scholar 

  • E. B. Dechene, A note on the extraction and fluorescence of some oxidation products of reserpine, J. Amer. Pharm. Assoc. Sci. Ed. 47, 757 (1958).

    Google Scholar 

  • K. Yamaguchi, T. Tabata, and H. Shoji, Studies on the determination of alkaloids from Rauwolfia serpentina. II.—Fluorometric determination of reserpine on filter paper, J. Pharm. Soc. Japan 77, 341 (1957).

    Google Scholar 

  • K. Yamaguchi, T. Tabata, and H. Shoji, Studies on the determination of alkaloids from Rauwolfia serpentina, J. Pharm. Soc. Japan 79, 476 (1959).

    Google Scholar 

  • K. A. Hamied and V. M. Bakshi, Rauwolfia serpentina alkaloids—New method of assay, Indian J. Pharm. 18, 190 (1956).

    Google Scholar 

  • J. Carol, D. Banes, J. Wolff, and O. Fallscheer, The chemical evaluation of Rauwolfia serpentina preparations, J. Amer. Pharm. Assoc. Sci. Ed. 45, 200 (1956).

    Google Scholar 

  • G. P. Sen, R. P. Banerjee, and M. L. Chatterjee, Effect of pre-treatment of Rauwolfia alkaloids on fluorescence and alkaloidal concentrations of C.C.D. fractions, Bull. Calcutta School Trop. Med. 5, 66 (1957).

    Google Scholar 

  • S. Udenfriend, H. Weissbach, and B. B. Brodie, Assay of serotonin and related metabolites, enzymes and drugs, Methods of Biochem. Analysis, Vol. 6, 124.

    Google Scholar 

  • C. R. Zakowski and W. J. Mader, Determination of reserpine, J. Amer. Pharm. Assoc. Sci. Ed. 45, 613 (1956).

    Google Scholar 

  • G. V. Mosquera, Espectro de fluorescencia de acido lisérgico y de los alcaloides del cornezuelo de centeno, Anales de Farmazia 15, 261 (1949).

    Google Scholar 

  • J. Gyenes, G. Szendei, B. Stefko, and N. Nemeth, Fluorimetric determination of unsaturated alkaloids in ergotamine-type hydrogenated ergot alkaloids, Magyar Kem. Folyoirat 61, 237 (1955).

    Google Scholar 

  • J. Gyenes and K. Szasz, The fluorimetric determination of ergot alkaloids, Magyar Kem. Folyoirat 61, 393 (1955).

    Google Scholar 

  • E. S. Boyd, The fluorimetric determination of lysergic acid diethylamide and ergonovine, Arch. Int. Pharm. Ther. 115, 43 (1958).

    Google Scholar 

  • S. Udenfriend, H. Weissbach, and B. B. Brodie, Assay of serotonin and related metabolites, enzymes and drugs, Methods of Biochemical Analysis, Vol. 6, 126.

    Google Scholar 

  • M. Klavehn and H. Rochelmeyer, Zur Analytik der Mutterkornalkaloide. 4. Mitteilung: Trennung und Nachweis der Alkaloide aus der Clavinreihe, Dtsch. Apoth. Ztg. 101, 477 (1961).

    Google Scholar 

  • H. Auterhoff and F. Moll, Dehydroyohimbine, Arch. Pharmazie 292, 540 (1959).

    Google Scholar 

  • D. F. Clausen and R. E. Brown, Determination of thiamine by the thiochrome method.—Effects of temperature and dissolved oxygen on fluorescence of quinine standard and of thiochrome, Ind. Eng. Chem. Anal. Ed. 16, 572 (1944).

    Google Scholar 

  • C. A. Grau, I. A. Migo, and R. Elicabe, Las bebidas quinadas del comercio: su identificacion fluorifotometrica, Revista Farmaceutica 91, 183 (1948/49).

    Google Scholar 

  • B. S. Jagle, Fluorometric determination of quinine in oily medicines, Rev. Quim. e Farm. Rio de Janeiro 15, 5 (1950).

    Google Scholar 

  • A. I. Kostyakov, Qualitative determination of quinine in pharmaceutical preparations by the fluorescence method, Aptechnoe Delo 2, 17 (1953).

    Google Scholar 

  • P. H. Balatre and C. Lefevre, Dosage fluorescimétrique de la quinine dans les médicaments, Ann. Pharm. Franc. 18, 481 (1960).

    Google Scholar 

  • E. L. and A. S. Koverga, Biokhimiya 14, 436 (1949).

    Google Scholar 

  • F. Kavanagh and R. H. Goodwin, The relationship between pH and fluorescence of several organic compounds, Arch. Biochem. 20, 315 (1949).

    Google Scholar 

  • A. L. Edgar and M. Sokolow, Experiences with the photofluorometric determination of quinidine in blood, J. Lab. Clin. Med. 36, 478 (1950).

    Google Scholar 

  • V. B. Schatz et al., Studies on tissue distribution, fluorescent properties and iodination of the plant alkaloid berberine, J. Med. Pharm. Chem. 2, 425 (1960).

    Google Scholar 

  • W. Ave, Über den Nachweis des Papaverins als Coralyn-Salz und des zweibindigen Schwefels in Heterocyclen, Angew. Chem. 62, 483 (1960).

    Google Scholar 

  • E. Brochmann-Hanssen and J. A. Evers, A fluorometric method for the determination of hydrastine in hydrastis, J. Amer. Pharm. Assoc. Sci. Ed. 40, 620 (1951).

    Google Scholar 

  • H. Schmid and P. Karrer, Über Curare-Alkaloide aus Calebassen, Helv. 33, 512 (1950).

    Google Scholar 

  • L. Kogan, F. J. Di Carlo, and W. E. Maynard, Determination of caffeine and trigonelline in coffee by paper chromatography, Anal. Chem. 25, 1118 (1953).

    Google Scholar 

  • A. T. Dann, Detection of N-oxides of the pyrrolizidine alkaloids, Nature 186, 1051 (1960).

    Google Scholar 

  • T. Numai, New test for identification of cocaine, Anal. Chem. 24, Dez. 13A (1952).

    Google Scholar 

  • P. H. Baltare, M. Traisnel, and J.-P. Delacambre, Microdosage halofluorimétrique de la codéine et de la codéthyline, Ann. Pharm. Franc. 19, 171 (1961).

    Google Scholar 

Amino Acids, Proteins, Nucleic Acids and Their Derivatives

  • A. J. Woiwood, Fluorescence of amino acids, peptides and amines on filter paper, Nature 166, 272 (1950).

    Google Scholar 

  • V. G. Shore and A. B. Pardee, Determination of amino acids by fluorescence of derivatives on paper, Anal. Chem. 28, 1479 (1956).

    Google Scholar 

  • H. Von Horst, H. Tang, and V. Jurkovich, Some factors in ultraviolet densitometry of amino acid chromato grams, Anal. Chem. 31, 135 (1959).

    Google Scholar 

  • D. M. P. Phillips, Use of ultraviolet fluorescence in paper chromatography, Nature 161, 53 (1948).

    Google Scholar 

  • W. D. Graham, Peng Yung Hsu, and J. McGrinnis, Correlation of browning, fluorescence and amino nitrogen change with destruction of methionine by autoclaving with glucose, Science 110, 217 (1949).

    Google Scholar 

  • A. R. Patton, E. M. Foreman and P. C. Wilson, Do amino acids fluoresce on paper grams?, Science 110, 593 (1949).

    Google Scholar 

  • H. S. Olcott and H. J. Dutton, Changes in stored dried eggs, source of fluorescence, Ind. Eng. Chem. 37, 1119 (1945).

    Google Scholar 

  • L. Fowden, The quantitative recovery and colorimetric estimation of amino acids separated by paperchromatography, Biochem. J. 48, 327 (1951).

    Google Scholar 

  • R. B. Conn, Fluorimetric determination of Creatine, Clin. Chem. 6, 537 (1960).

    Google Scholar 

  • A. J. Woiwood, A method for the estimation of micro amounts of amino nitrogen and its application to paper partition chromatography, Biochem. J. 45, 412 (1949).

    Google Scholar 

  • D. P. Schwartz, Specific identification of hydroxy amino acids on paper chromatograms of protein hydrolysates, Anal. Chem. 30, 1855 (1958).

    Google Scholar 

  • E. R. Cook and M. Luscombe, A new destructive technique for locating amino acids, Nature 180, 708 (1957).

    Google Scholar 

  • P. Longin, Contribution à l’étude de la fluoréscence des acides aminées en solution aqueuse, C.R. Acad. Sci. 248, 1971 (1959).

    Google Scholar 

  • V. G. Shore and A. B. Pardee, Fluorescence of some proteins, nucleic acids and related compounds, Arch. Biochem. Biophys. 60, 100 (1956).

    Google Scholar 

  • E. Fujimori, Fluorescence reactions. V. — Fluorescent reaction of acid amides and proteins, J. Chem Soc. Japan 72, 417 (1951).

    Google Scholar 

  • J. E. Fildes, D. J. R. Laurence, and V. H. Rees, The dye-binding capacity of human plasma determined fluorimetrically and its relation to the determination of plasma albumin, Biochem. J. 56, XXXI (1954).

    Google Scholar 

  • G. Weber and D. J. R. Laurence, Fluorescent indicators of adsorption in aqueous solution and on the solid phase, Biochem. J. 56, XXXI (1954).

    Google Scholar 

  • J. J. Betheil, Fluorimetric microdetermination of human serum albumin, Anal. Chem. 32, 560 (1960).

    Google Scholar 

  • C. S. Chadwick, P. Johnson, and E. G. Richards, Depolarization of the fluorescence of proteins labelled with various fluorescent dyes, Nature 186, 239 (1960).

    Google Scholar 

  • H. Ueleke, Markierung von Proteinen mit fluoreszierenden Farbstoffen, Naturwissenschaften 45, 87 (1958).

    Google Scholar 

  • F. W. J. Teale and G. Weber, Ultra violet fluorescence of proteins, Biochem. J. 72, 15P (1959).

    Google Scholar 

  • F. W. J. Teale, Haemoglobin equilibrium studies by fluorimetry, Biochim. Biophys. Acta 35, 289 (1959).

    Google Scholar 

  • F. W. J. Teale, The ultra violet fluorescence of proteins in neutral solutions, Biochem. J. 76, 381 (1960).

    Google Scholar 

  • V. Meneghelli, La ricerca dell’emoglobina fetale nette emazie con il metodo degli anticorpi fluorescenti, Boll. Soc. Ital. Biol. Sper. 36, 943 (1960).

    Google Scholar 

  • A. C. Maehly, Acid compounds of hernins and hemiproteins — B-compounds, Acta Chem. Scand. 12, 1247 (1958).

    Google Scholar 

  • J. M. Kissane and E. Robins, The fluorimetric measurement of desoxyribonucleic acid in animal tissues, with special reference to the central nervous system, J. Biol. Chem. 233, 184 (1958).

    Google Scholar 

  • R. De Wayne and M. Friedkin, The fluorimetric determination of thymine in deoxyribonucleic acid and derivatives, J. Biol. Chem. 233, 483 (1958).

    Google Scholar 

  • K. Weber and J. Hojman, Xanthopterin. IV. — Fluorescence of xanthopterin adsorbates, Bull. Soc. Chim. Belgrade 15, 27 (1950).

    Google Scholar 

  • B. De Lerma, A. Colarusso, and P. Boni, Quantitative study of fluorescence spectra of folic acid and xanthopterin in neutral aqueous solutions, Boll. Soc. Ital. Biol. Sper. 24, 1198 (1948).

    Google Scholar 

  • K. Weber and J. Hojman, Xanthopterin. III. — The extinction of the fluorescence of xanthopterin, J. Arch. Kern. 21, 37 (1949).

    Google Scholar 

  • M. O. L. Crowe and A. Walker, Fluorescence and absorption spectral data for pterin isolated from the tubercle bacillus by Chromatographic analysis, Brit. J. Exp. Path. 35, 18 (1945).

    Google Scholar 

  • D. M. Simpson, Application of fluorimetric analysis to the study of pterins, Analyst 72, 382 (1947).

    Google Scholar 

  • K. Slavik, A. Dvorakova, and V. Slavikova, Über den Stoffwechsel der Folsäure. —IV. Über die Umwandlungen der Folsäurederivate in vivo, Coll. Czech. Chem. Comm. 23, 1382 (1958).

    Google Scholar 

  • H. M. Kalckar, T. Floystrup, and M. Schon, Enzymic fluorimetric analysis of urinary pteridine derivatives, Intern. Congr. Biochem. Abs. of Communs. 1st Congr. Cambridge, Engl. 1949, 75.

    Google Scholar 

  • T. Kaufmann, Untersuchungen über die fluoreszierenden Pigmente in der Haut von Zierfischen, Z. Naturforschung 14 b, 358 (1959).

    Google Scholar 

  • R. S. Tipson and L. H. Chretcher, Quantitative fluorimetric microdetermination of alloxan monohydrate as riboflavin, Anal. Chem. 22, 822 (1950).

    Google Scholar 

  • P. Karrer, F. Koller, and H. Stuerzinger, Nachweis kleiner Mengen Alloxan.Zur Frage seines Vorkommens im tierischen Organismus, Helv. 28, 1529 (1945).

    Google Scholar 

  • M. E. Auerbach and E. Angell, Fluorimetric assay for minute amounts of some thiohydantoins, J. Pharm. Pharmacol. 10, 776 (1958).

    Google Scholar 

  • E. J. Schantz, D. Stefanye, and L. Spero, Observations on the fluorescence and toxicity of botulinum toxin, J. Biol. Chem. 235, 3489 (1960).

    Google Scholar 

  • B. Drevon, Corrélation entre la teneur en β-lipoprotéines et en protéines totales des liquides biologiques. Conséquences dans l’interprétation du test de Burstein, C.R. Soc. Biol. 153, 1370 (1959).

    Google Scholar 

  • D. E. Dugan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectra photofluorometric study of compounds of biological interest, Arch. Biochim. Biophys. 68, 1 (1957).

    Google Scholar 

  • R. L. Searcy and L. M. Bergquist, Fluorescent detection of serum lipoproteins, Clin. Chim. Acta 5, 941 (1960).

    Google Scholar 

  • H. Rinderknecht, A new technique for the fluorescent labelling of proteins, Experientia 16, 430 (1960).

    Google Scholar 

  • G. L. Ellman, A. Burkhalter, and J. La Dou, A fluorometric method for the determination of hippuric acid, J. Lab. Clin. Med. 57, 813 (1961).

    Google Scholar 

Antibiotics

  • J. V. Scudi and V. C. Jelinek, A rapid micro method for the fluorimetric determination of penicillin, J. Biol. Chem. 164, 195 (1946).

    Google Scholar 

  • M. Serembe, Sulla fluoreszenza della terramicina: titolazione fluorometrica, Arch. Ital. Sci. Farmacol. 1 (3), 244 (1951).

    Google Scholar 

  • M. Serembe, Raffronto fra aureomicina e terramicina sotto l’aspetto della fluoreszenza, Boll. Soc. Biol. Sper. 27, 1331 (1951).

    Google Scholar 

  • F. S. Chiccarelli, P. Van Gieson, and M. H. Woolford, The fluorometric assay for chlortetracycline HCl and the determination of tetracycline HCl in chlortetracycline HCl, J. Amer. Pharm. Assoc. Sci. Ed. 45, 418 (1956).

    Google Scholar 

  • J. Levine, E. A. Garlock, and H. Fischbach, The chemical assay of aureomycin, J. Amer. Pharm. Assoc. Sci. Ed. 38, 473 (1949).

    Google Scholar 

  • R. Santi, Sulla fluoreszenza dell’aureomicina, Boll. Soc. Ital. Biol. Sper. 25, 755 (1949).

    Google Scholar 

  • A. Saltzman, Fluorophotometric estimation of aureomycin in blood and urine, J. Lab. Clin. Med. 35, 123 (1950).

    Google Scholar 

  • R. Santi, Behaviour of aureomycin in the animal organism indicated by the fluorometric method II.—Method of titration, Boll. Soc. Ital. Biol. Sper. 26, 497 (1950).

    Google Scholar 

  • D. H. Feldman, H. S. Kelsey, and J. C. Cavagnol, Fluorimetric determination of chlortetracycline, Anal. Chem. 29, 1697 (1957).

    Google Scholar 

  • T. L. Loo, E. Titus, and D. P. Rall, Nature of fluorophore localizing in tetracycline-treated mouse tumor, Science 126, 253 (1957).

    Google Scholar 

  • L. Murea and I. Crucennu, Beiträge zum Studium der fluorometrischen Bestimmung des Chlortetracyclinchlorhydrates Pharmazie 15, 489 (1960).

    Google Scholar 

  • G. G. Gallo, P. Sensi, and P. Radaelli, Rifomicina — VII. Analisi spettrofotometrica della rifomicina B, Il Farmaco, Ed. Prat. 15, 283 (1960).

    Google Scholar 

  • E. Muzii, Detection by fluorescence of oxytetracycline bound to bone, Nature 189, 934 (1961).

    Google Scholar 

  • K. W. Kohn, Determination of tetracyclines by extraction of fluorescent complexes.—Application to biological materials, Anal. Chem. 33, June, 862 (1961).

    Google Scholar 

  • K. W. Kohn, Determination of tetracyclines by extraction of fluorescent complexes, Anal. Chem. 33, 862 (1961).

    Google Scholar 

  • C. Bedford, J. K. Child, and E. G. Tomich, Spectrofluorometric assay of griseofulvin, Nature 184, 365 (1959).

    Google Scholar 

Benzopyrones

  • J. M. Slatensek, Some causes for variation of coumarin content in sweet clover, K. Amer. Soc. Agron. 39, 596 (1947).

    Google Scholar 

  • W. J. White, R. G. Savage, and F. B. Johnson, A slightly modified fluorometric method of testing for coumarin content in sweet clover, Sci. Agr. 32, 278 (1952).

    Google Scholar 

  • K. Blyain, Biokhimiya 21, 689 (1956).

    Google Scholar 

  • C. E. Wheelock, The fluorescence of some coumarins, J. Amer. Chem. Soc. 81, 1348 (1959).

    Google Scholar 

  • N. M. Shan and L. D. Dava, Coumarins as new indicators in acidimetry and alkalimetry, Curr. Sci. India 18, 381 (1949).

    Google Scholar 

  • K. Neelakantam and G. Viswanath, Fluorescent indicators for acid-base titration, Curr. Sci. India 19, 15, 27 (1950).

    Google Scholar 

  • B. N. Mattoo, Absorption and fluorescence spectra of coumarins, Trans. Faraday Soc. 52, 1184 (1956).

    Google Scholar 

  • R. H. Goodwin and F. Kavanagh, The fluorescence of coumarin derivatives as a function of pH, Arch. Biochem. Biophys. 36, 451 (1952), Arch. Biochem. 27, 152 (1950).

    Google Scholar 

  • F. Feigl, H. E. Feigl, and D. Goldstein, A sensitive and specific test for coumarin through photo catalysis, J. Amer. Chem. Soc. 77, 4162 (1955).

    Google Scholar 

  • S. Berlingozzi and F. Fabbrini, Paper Chromatographic separation of coumarin and its derivatives, Sperimentale Sez. Chim. Biol. 5, 1 (1954).

    Google Scholar 

  • H. Podall, 5,6-Dihydroxy-4-methyl-coumarin as a fluorimetric indicator, Anal. Chem. 24, 424 (1952).

    Google Scholar 

  • J. Pavillard and Ch. Beauchamp, Sur la séparation, en Chromatographie de portage sur papier, de l’acide indole acétique et de certains composés fluorescents (Scopoletine) apparentes á la coumarine, C.R. Acad. Sci. 244, 678 (1957).

    Google Scholar 

  • C. E. Wheelock, The fluorescence of some coumarins, J. Amer. Chem. Soc. 81, 1348 (1959).

    Google Scholar 

  • S. H. Varnier and W. Stanley, Fluorimetric determination of 7-geranyloxy-coumarin in lemon oil. Analysis of mixtures of grapefruit oil in lemon oil. J. Ass. Off. Agr. Chem. Wash. 41, 432 (1958).

    Google Scholar 

  • M. Haag-Berrurier, Dosage de l’ombelliferone dans la piloselle, C. R. Acad. Sci. 248, 1864 (1959).

    Google Scholar 

  • Y. Ichimura, Studies on fluorescence of coumarin derivatives.II. Fluorescence spectra of coumarins.—III. Fluorescence of furocoumarins.—IV. Fluorometric analysis of coumarin derivatives, J. Pharm. Soc. Japan 80, 771 (1960).

    Google Scholar 

  • M. A. Pathak and J. H. Fellman, Activating and fluorescent wavelengths of furocoumarins: psoralens, Nature 185, 382 (1960).

    Google Scholar 

  • S. K. K. Jatkar and B. N. Mattoo, Absorption and fluorescence spectra of chromone, J. Indian Chem. Soc. 33, 599 (1956).

    Google Scholar 

  • S. K. K. Jatkar and B. N. Mattoo, Absorption and fluorescence spectra of flavones, J. Indian Chem. Soc. 33, 623 (1956).

    Google Scholar 

  • S. K. K. Jatkar and B. N. Mattoo, Absorption and fluorescence spectra of flavonols. J. Indian Chem. Soc. 33, 641 (1956)

    Google Scholar 

  • A. J. Glazko, F. Adair, E. Papageorg, and G. T. Lewis, Fluorophotometric determination of rutin and other flavones, Science 105, 48 (1947).

    Google Scholar 

  • R. Neu and P. Hagendorn, Über die Farbreaktion von Flavonkörpern mit Antimontrichlorid.—III, Naturwissenschaften 40, 411 (1953).

    Google Scholar 

  • R. Neu, Eine neue organische Borverbindung als analytisches Reagens, Z. Anal. Chem. 142, 335 (1954).

    Google Scholar 

  • R. Neu, Mikrogramm-Nachweis von 3-Hydroxyflavonen mit aromatischen Diarylborsäuren, Microchemica Acta 1956, 1169.

    Google Scholar 

  • R. Neu, Der Nachweis der Hydrophenylbenzo-y-pyrone mit Diarylborsäuren in Gegenwart von Elektrodonatoren, Naturwissenschaften 45, 311 (1958).

    Google Scholar 

  • R. Neu, Ein Nachweis für Chinasäure, Naturwissenschaften 45, 286 (1958).

    Google Scholar 

  • R. Neu, Der Nachweis von Flavanonen und Flavanolen durch eine spezifische Reaktion, Arch. Pharm. Berlin 292, 431 (1959).

    Google Scholar 

  • J. Naghski, C. S. Fenske, and J. F. Conch, Use of paper-chromatography for the quantitative estimation of quercetin in rutin, J. Amer. Pharm. Assoc. Sci. Ed. 40, 613 (1951).

    Google Scholar 

  • M. Haag-Berrurier and P. Duquenois, Le contróle des principes actifs antibrucelliques de l’hieracium pilosella L., avant et après stabilisation, Pharm. Acta Helv. 35, 409 (1960), C. R. Acad. Sci. 248, 1864 (1959).

    Google Scholar 

  • T. B. Grage and S. H. Wender, Quantitative determination of certain flavonol-3-glycosides, Anal. Chem. 22, 708 (1950).

    Google Scholar 

  • L. Hoerhammer and R. Haensel, Nachweis und Bestimmung von Rutin neben Quercetin, Arch. Pharm. Berlin 284, 276 (1961).

    Google Scholar 

  • L. Hoerhammer and R. Haensel, Isolierung eines Rhamnazinesters aus Polygonum hydropiper, Arch. Pharm. Berlin 286, 153 (1953).

    Google Scholar 

  • L. Hoerhammer and R. Haensel, Zur Analytik der Flavone. III—Über die Spezifität des Taubocktests, Arch. Pharm. Berlin 286, 447 (1953).

    Google Scholar 

  • L. Hoerhammer and K. Mueller, Zur Analytik der Flavone. —IV. Über die Anwendung des Zirkon-Zitronensäure-Tests als Sprühreaktion in der Papierchromatographie, Arch. Pharm. Berlin 287, 310 (1954).

    Google Scholar 

  • H. W. Casteel and S. H. Wender, Identification of flavonoid compounds by filter paper chromatography, Anal. Chem. 23, 1582 (1951), Anal. Chem. 25, 508 (1953).

    Google Scholar 

  • B. L. Williams and S. H. Wender, The isolation and identification of kaempferol and quercetin from strawberries, J. Amer. Chem. Soc. 74, 5919 (1952).

    Google Scholar 

  • E. De C. Fonseca, Identification and determination of rotenone by UV fluorescence, Ann. Fac. Med. San Paulo 7, 411 (1949).

    Google Scholar 

  • T. Anyos and C. Steelink, Fluorescent petal constituents of Chrysanthemum coronarium L., Arch. Biochem. Biophys. 90, 63 (1960).

    Google Scholar 

Enzymes and Co-enzymes

  • K. Kacl, B. Vecerek, J. Vercerkova, and B. Chundela, Fluorimetry.—Fluorimetric evaluation of alkaline phosphatases in blood serum, Casopis Lekarn Ceskych 93, 621 (1954).

    Google Scholar 

  • T. Takeuchi and S. Nogami, The use of fluorescence in the histochemical technique for phosphatase, Acta Path. Japon. 4, 277 (1954).

    Google Scholar 

  • K. Seraydarian, W. F. H. M. Mommaerts, and A. Wallner, Enzymatic fluorometric methods for the microdetermination of hexose phosphates in muscle, J. Biol. Chem. 235, 2191 (1960).

    Google Scholar 

  • D. Robinson, The fluorimetric determination of β-glucosidase, its occurrence in the tissues of animals including insects, Biochem. J. 63, 39 (1956).

    Google Scholar 

  • N. Constantzas and J. Kocomek, Glykoside des 4-Methylumbelliferons, Coll. Czech. Chem. Comm. 24, 1099 (1959).

    Google Scholar 

  • J. A. R. Mead, J. N. Smith, and R. I. Williams, The biosynthesis of the glucuronidase of umbelliferone and 4-methyl umbelliferone and their use in fluorimetric determination of β-glucuronidase, Biochem. J. 61, 569 (1955).

    Google Scholar 

  • H. A. Hackensellner, F. Seelich, and H. Lind, Fluorimetrische Bestimmung der Aktivität der β-Glukuronidase im Serum Gesunder und Kranker unter besonderer Berücksichtigung der Krebsfälle, Wien. Klin. Wschr. 70, 28 (1958).

    Google Scholar 

  • H. F. Fisher, The mechanism of the glutamic dehydrogenase reaction, J. Biol. Chem. 235, 1830 (1960).

    Google Scholar 

  • I. P. Lowe, E. Robins, and G. S. Eyerman, The fluorimetric measurement of glutanic decarboxylase and its distribution in brain, J. Neurochem. 3, 8 (1958).

    Google Scholar 

  • R. Shukuya and G. W. Schwert, Glutamic acid decarboxylase.—II. The spectrum of the enzyme, J. Biol. Chem. 235, 1655 (1960).

    Google Scholar 

  • T. Laursen and P. F. Hausen, Fluorimetric method for measuring the activity in serum of the enzyme glutamic-pyruvic transaminase, Scand. J. Clin. Lab. Invest. 10, 53 (1958).

    Google Scholar 

  • D. H. Leaback and P. G. Walker, The fluorimetric assay of N-acetyl-β-glucosaminidase, Biochem. J. 76, 29P (1960).

    Google Scholar 

  • H. Theorell and A. D. Winer, Dissociation constants of the liver alcohol dehydrogenase coenzyme complexes, Arch. Biochem. Biophys. 83, 291 (1959).

    Google Scholar 

  • S. F. Velick, Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes, J. Biol. Chem. 233, 1455 (1958).

    Google Scholar 

  • S. Shifrin, N. O. Kaplan, and M. M. Ciotti, Fluorescence studies of coenzyme-binding to beef heart lactic dehydrogenase, J. Biol. Chem. 234, 1555 (1959).

    Google Scholar 

  • A. D. Winer, W. B. Novoa, and G. W. Schwert, Observations of new phenomena in the fluorescence spectrum of a diphosphopyridine nucleotide-linked dehydrogenase, J. Amer. Chem. Soc. 79, 6571 (1957).

    Google Scholar 

  • B. Chance and H. Baltscheffsky, Respiratory enzymes in oxidative phosphorylation.—VII. Binding of intramitochondrial reduced pyridine nucleotide, J. Biol. Chem. 233, 736 (1958).

    Google Scholar 

  • K. B. Jacobson and L. Astrachan, Specific methods for the micro-determination of pyridine nucleotides and pyridine nucleotide enzymes, Arch. Biochem. Biophys. 71, 69 (1957).

    Google Scholar 

  • W. C. Rhodes and W. D. McElroy, Enzymatic synthesis of adrenyloxy luciferin, Science 128, 253 (1958).

    Google Scholar 

  • N. Levitas, J. Robinson, F. Rosen, J. W. Huff, and W. A. Perlzweig, The fluorescent condensation product of N 1-methyl-nicotinamide and acetone.—III. A rapid fluorimetric method for the determination of the total pyridine nucleotides in the red blood cells, J. Biol. Chem. 167, 169 (1947).

    Google Scholar 

  • M. Schou, Experiences with the fluorimetric method for determination of the pyridine nucleotides in blood with some determinations on blood from psychiatric patients, Biochim. Biophys. Acta 4, 422 (1950).

    Google Scholar 

  • J. P. Kring and J. N. Williams, Interference in the fluorometric analysis of pyridine nucleotides by certain ions, J. Biol. Chem. 212, 751 (1955).

    Google Scholar 

  • P. Greengard, Determination of intermediary metabolites by enzymic fluorimetry, Nature 178, 632 (1956), Biochem. J. 64, 56 P (1956).

    Google Scholar 

  • O. H. Lowry, N. R. Roberts, and J. I. Kapphahn, The fluorometric measurement of pyridine nucleotides, J. Biol. Chem. 224, 1047 (1957).

    Google Scholar 

  • A. M. Mayer, The interference of phenols in the fluorometric determination of nucleotides, Experientia 15, 158 (1959).

    Google Scholar 

  • D. W. Moss, Kinetics of phosphatase action on naphthyl phosphates, determined by a highly sensitive spectrofluorimetric technique, Biochem. J. 76, 32 P (1960).

    Google Scholar 

  • L. J. Greenberg and D. Glick, Studies in histochemistry.—LIX. Quantitative histochemical distribution of oxidized and reduced pridine nucleotides in the rat adrenal and the influence of ACTH, J. Biol. Chem. 235, 2744 (1960).

    Google Scholar 

  • D. M. Campbell and D. W. Moss, Spectrofluorometric determination on acid phosphatase activity, Clin. Chim. Acta 6, 307 (1961).

    Google Scholar 

  • E. Grogg, Eine einfache Methode zur Bestimmung der Δ-A minolävulinsäuredehydrase-Aktivität im Blute und in der Leber, Bull. schweiz. med. Akad. Wiss. 16, 305 (1960).

    Google Scholar 

  • D. H. Leaback and P. G. Walker, Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-β-glucosaminidase, Biochem. J. 78, 151 (1961).

    Google Scholar 

  • R. Kuntzman, P. A. Shore, D. Bogdanski, and B. B. Brode, Micro-analytical procedures for fluorometric assay of brain dopa-5 HTP decarboxylase, Norepinephrine and Serotonin and a detailed mapping of decarboxylase activity in brain, J. Neurochem. 6, 226 (1960).

    Google Scholar 

  • H. Theorell and T. A. Langan, Fluorometric observations of binary and ternary complexes formed with malic dehydrogenase Coenzyme and D-malic acid, Acta Chem. Scand. 14, 933 (1960).

    Google Scholar 

  • T. A. Langan, Changes in the fluorescence spectrum of reduced triphosphopyridine nucleotide on binding to isocitric dehydrogenase, Acta Chem. Scand. 14, 936 (1960).

    Google Scholar 

Indole Derivatives

  • S. M. Shea, Fluorescent development of adrenaline in paper chromatograms, Nature 165, 729 (1950).

    Google Scholar 

  • K. S. Jorgensen, Studies on the quantitative determination of the adrenaline content of the blood with the fluorescence method, Acta Pharm. Tox. 1, 225 (1945).

    Google Scholar 

  • J. H. Heller, R. B. Setlow, and E. Mylon, Fluorometric studies of epinephrine and arterenol, Amer. J. Physiol. 161, 268 (1950).

    Google Scholar 

  • P. Fischer and Z. M. Bacq, The fluorescence of adrenaline and adrenochrome, Exp. Med. Surg. 8, 104 (1950).

    Google Scholar 

  • S. Annersten, A. Groenwall, and E. Koeiw, The fluorimetric determination of adrenaline in blood plasma, Scand. J. Clin. Lab. Invest. 1, 60 (1949), Nature 163, 136 (1949).

    Google Scholar 

  • W. Bloch, Zur quantitativen Bestimmung des Adrenalins im Blut mit der Fluoreszenzreaktion, Helv. Physiol. Acta 6, 122 (1948).

    Google Scholar 

  • A. Groenwall, On the adrenaline concentration in blood, Acta Med. Scand., Suppl. 239, 407 (1950).

    Google Scholar 

  • A. Pekkarinen, Studies on the chemical determination, occurrence and metabolism of adrenaline in the animal organism, Acta Physiol. Scand. 16, Suppl. 54 (1948).

    Google Scholar 

  • J. Ehrlen, Fluorimetric determination of adrenaline.—II. The chemical structure of the fluorescent compounds, Farm. Rev. 48, 485 (1949).

    Google Scholar 

  • G. Ritzel, W. A. Hunziger, and H. Staub, Über das Verhalten der optischen Isomeren von Adrenalin im Blut, Experientia 14, 205 (1958).

    Google Scholar 

  • J. Ehrlen, A fluorometric determination of adrenaline, Farm Rev. 45, 753 (1946).

    Google Scholar 

  • J. Ehrlen, Fluorimetric determination of adrenaline. II, Farm. Rev. 47, 242 (1948).

    Google Scholar 

  • A. Lund, Fluorimetric determination of adrenaline in blood. —I. Isolation of the fluorescent oxidation product of adrenaline, Acta Pharm. Tox. 5, 75 (1949).

    Google Scholar 

  • A. Lund,—II. The chemical constitution of adrenaline, Acta Pharma. Tox. 5, 121 (1949).

    Google Scholar 

  • A. Lund,—III. A new sensitive and specific method, Acta Pharm. Tox. 5, 231 (1949).

    Google Scholar 

  • G. L. Ellmann, Determination of epinephrine [adrenaline] and related compounds on paper chromatograms, Nature 181, 768 (1958).

    Google Scholar 

  • V. D. Osinskaya, Oxidation of adrenaline, nor adrenaline, adrenolone and noradrenolone in fluorescent substances, Biokimiya 18, 56 (1953).

    Google Scholar 

  • J. Morch, The biological assay of adrenaline and noradrenaline in injections, Pharm. Acta Helv. 35, 375 (1960).

    Google Scholar 

  • D. M. Shepherd, Detection of some precursors of adrenaline by paper chromatography, Nature 171, 1160 (1953).

    Google Scholar 

  • U. S. Von Euler and J. Floding, Fluorometric micromethod for the differential estimation of adrenaline and noradrenaline, Acta Physiol. Scand. 33, Suppl. 118, 45 (1955).

    Google Scholar 

  • U. S. Von Euler and J. Floding, Diagnosis of phaeochromocytom by fluorometric estimation of adrenaline and nor adrenaline, Scand. J. Clin. Lab. Invest. 8, 288 (1956).

    Google Scholar 

  • U. S. Von Euler and F. Lishaiko, The estimation of catecholamines in urine, Acta Physiol. Scand. 45, 122 (1959).

    Google Scholar 

  • H. L. Price and M. L. Price, Chemical estimation of adrenaline and noradrenaline in human and canine plasma. II.—Critiique of the trihydroxyindole method, J. Lab. Clin. Med. 50, 769 (1957).

    Google Scholar 

  • W. J. Griffith and S. Collinson, The estimation of noradrenaline in urine and its excretion in normal and hypertensive subjects, J. Clin. Path. 10, 120 (1957).

    Google Scholar 

  • H. Weil-Malherbe and A. D. Bone, The estimation of catecholamines in urine by a chemical method, J. Clin. Path. 10, 138 (1957).

    Google Scholar 

  • A. F. Schaepdryver, (a) On the secretion, distribution and excretion of adrenaline and noradrenaline, Diss. Gent (1959).

    Google Scholar 

  • A. F. Schaepdryver, (b) Dosage fluorimétrique de l’adrénaline et de la noradrénaline dans les urines. Méthodes et intérêt clinique, Acta Clin. Belg. 12, 541 (1957).

    Google Scholar 

  • A. F. Schaepdryver, (c) Differential fluorimetric estimation of adrenaline and noradrenaline in urine, Arch. Int. Pharmacodyn. 115, 233 (1958).

    Google Scholar 

  • S. Larno-Vacheron, Déterminations fluorimétriques des petites quantités d’adrénaline et de noradrénaline en solutions aqueuses pures, C. R. Soc. Biol. No. 2, 263 (1960).

    Google Scholar 

  • A. F. Munro and R. Robinson, Normal levels for plasma adrenaline and noradrenaline compared with complete transverse lesions of the spinal cord, Proc. Physiol. Soc. 141, 4 (1958).

    Google Scholar 

  • J. T. Wright, A rapid quantitative method for chemical estimation of urinary catecholamines in the diagnosis of phaeochromocytoma, Lancet 1958/II, 1155.

    Google Scholar 

  • S. Roston, Fluorometric determination of adrenaline and noradrenaline in aqueous solution, Anal. Chem. 30, 1363 (1958).

    Google Scholar 

  • R. Robinson and F. D. Stott, The fluorimetric determination of adrenaline and noradrenaline in plasma, Biochem. J. 68, 28P (1958).

    Google Scholar 

  • R. B. Johnson, An improved method for the chemical determination of urinary catecholamines, J. Lab. Clin. Med. 51, 956 (1958).

    Google Scholar 

  • A. Bertler, A. Carlson, and E. Rosengren, A method for the fluorimetric determination of adrenaline and noradrenaline in tissues, Acta Physiol. Scand. 44, 273 (1958).

    Google Scholar 

  • H. Kaufmann and E. Koch, Recherches sur l’élimination urinaire des dérivés d’oxydation des catecholamines, Proc. Med. 67, 1141 (1959).

    Google Scholar 

  • T. P. Waalkes, A. S. Sjoerdsma, C. R. Crevelting, H. Weissbach, and S. Udenfriend, Serotonin, norepinephrine and related compounds in bananas, Science 127, 648 (1958).

    Google Scholar 

  • A. Lund, Simultaneous fluorimetric determination of adrenaline and noradrenaline in blood, Acta Pharm. Tox. 66, 137 (1950).

    Google Scholar 

  • A. Pekarinen and M. E. Pekarinen, Noradrenaline and adrenaline in the urine. Part I.—Their chemical determination, Scand. J. Clin. Lab. Invest. 7, 1 (1955).

    Google Scholar 

  • G. Cohen and M. Goldenberg, The simultaneous fluorimetric determination of adrenaline and noradrenaline in plasma.—I. The fluorescence characteristics of adrenolutine and their simultaneous determination in mixtures, J. Neurochemistry 2, 58 (1957).

    Google Scholar 

  • T. B. B. Crawford and W. Law, A method for the estimation of adrenaline and noradrenaline in urine, J. Pharm. London 10, 179 (1958).

    Google Scholar 

  • R. T. Jones and W. D. Blake, Fluorimetric estimation of epinephrine and norepinephrine, J. Appl. Physiolog. 12, 448 (1958).

    Google Scholar 

  • T. Canbaeck and J. G. L. Harthon, On the fluorimetric determination of adrenaline and noradrenaline, J. Pharm. Pharmacol. 11, 764 (1959).

    Google Scholar 

  • F. V. Bruecke, F. Kaindl, W. Kobinger, O. Kraupp, and H. Mayer, Über den Vergleich einer chemischen und biologischen Bestimmungsmethode von Adrenalin und Nor-adrenalin in Nebennierenvenenblut nach Hypothalamusreizung, Arch. Exp. Path. Pharmak. 219, 169 (1953).

    Google Scholar 

  • R. Straus and M. Wurm, Catecholamines and the diagnosis of phaeochromocytoma. A review and evaluation, Amer. J. Clin. Pathol. 34, 403 (1960).

    Google Scholar 

  • E. Pitkaenen, The determination and excretion of adrenaline and nor adrenaline in urine, Acta Physiol. Scand. 38, Suppl. 129 (1956).

    Google Scholar 

  • T. B. B. Crawford and W. Law, Method for the estimation of adrenaline and noradrenaline in urine, J. Pharm. Pharmacol. 10, 179 (1958).

    Google Scholar 

  • A. Goldfien and R. Karler, Effect of light on fluorescence of ethylenediamine derivatives of epinephrine and norepinephrine, Science 127, 1292 (1948).

    Google Scholar 

  • J. Marzai, P. Romain, and P. Mesnard, Fluorescence des composés de la série de l’adrénaline, Bull. Soc. Pharm. Bordeaux 93, 18 (1955).

    Google Scholar 

  • S. Udenfriend and J. B. Wyngaarden, Precursors of adrenal epinephrine and norepinephrine in vivo, Biochim. Biophys. Acta 20, 48 (1956).

    Google Scholar 

  • P. A. Shore and J. S. Olin, Identification and chemical assay of nor epinephrine in brain and other tissues, J. Pharm. Exp. Therap. 122, 295 (1958).

    Google Scholar 

  • P. A. Shore and J. S. Olin, Identification and chemical assay of nor epinephrine in brain and other tissues, J. Pharm. Exp. Therap. 122, 295 (1958).

    Google Scholar 

  • E. Mylon and S. Roston, Effect of tyrosinase upon the fluorimetric determination of epinephrine and arterenol, J. Physiol. 172, 612 (1953).

    Google Scholar 

  • H. Weil-Malherbe, The condensation of catechols with ethylenediamine, Biochim. Biophys. Acta, 40, 351 (1960).

    Google Scholar 

  • A. Randup and I. Munkvad, On the measurement of adrenochrome in blood, Amer. J. Psych. 117, 153 (1960).

    Google Scholar 

  • A. N. Payza and M. E. Mahon, Spectrofluorometric estimation of adrenochrome in human plasma, Anal. Chem. 31, 1170 (1959).

    Google Scholar 

  • S. Natelson, J. K. Lugovoy, and J. B. Pincus, A new fluorometric method for the determination of epinephrine, Arch. Biochem. 23, 157 (1949).

    Google Scholar 

  • H. Weil-Malherbe and A. D. Bone, Chemical estimation of adrenaline-like substances in blood, Biochem. J. 51, 311 (1952).

    Google Scholar 

  • W. M. Manger, E. J. Baldes, E. V. Flock, J. Berkson, and M. Jakobs, A method of quantitative determination of adrenaline and nor adrenaline, Proc. Staff Meetings Mayo Clinic 28, 526 (1953).

    Google Scholar 

  • M. E. Pitkaenen, Detection of adrenaline and noradrenaline on paper chromatograms, Scand. J. Clin. Invest. 6, 78 (1954).

    Google Scholar 

  • U. S. Euler and F. Lishajko, Improved technique for the fluorimetric estimation of catecholamines, Acta Physiol. Scand. 51, 348 (1961).

    Google Scholar 

  • M. E. Pitkaenen, Detection of adrenaline and noradrenaline on paper chromatograms, Scand. J. Clin. Invest. 6, 78 (1954).

    Google Scholar 

  • A. De Valk and H. L. Price, The chemical estimation of epinephrine and norepinephrine in human and canine plasma.—I. A critique of the ethylenediamine condensation method, J. Clin. Invest. 35, 837 (1956).

    Google Scholar 

  • W. A. Hunzinger, G. Ritzel, and H. Staub, Über das Verhalten von Adrenalin und Noradrenalin im Blut, Helv. 39, 2096 (1956).

    Google Scholar 

  • J. A. Richardson, A. K. Richardson, and O. J. Brodie, Fluorimetric determination of epinephrine and norepinephrine in plasma, J. Lab. Clin. Med. 47, 832 (1956).

    Google Scholar 

  • H. Weil-Malherbe and A. D. Bone, The estimation of catecholamines in urine by a chemical method, J. Clin. Pathol. 10, 138 (1957).

    Google Scholar 

  • H. Weil-Malherbe and A. D. Bone, The fluorometric estimation of adrenaline and noradrenaline in plasma, Biochem. J. 67, 65 (1957).

    Google Scholar 

  • G. F. Mangan and J. V. Mason, Fluorescence of ethylenediamine derivatives of epinephrine and norepinephrine, Science 126, 562 (1957).

    Google Scholar 

  • J. Kaegi, M. Burger and K. Giger, Modifikationen zur Fluoreszenzmethode von Weil-Malherbe und Bone zur Bestimmung von Adrenalin und Noradrenalin im menschlichen Blutplasma, Arch. Exp. Path. Pharmakol. 230, 470 (1957).

    Google Scholar 

  • K. Giger, Veränderung der Adrenalin-und Noradrenalin-konzentration im menschlichen Blutplasma unter Chlorisondamin (Ecolid), Med. Wschr. 88, 238 (1958).

    Google Scholar 

  • G. F. Mangan and J. W. Mason, Fluorometric measurement of plasma adrenaline and noradrenaline concentrations in man, monkey and dog, J. Lab. Clin. Med. 51, 484 (1958).

    Google Scholar 

  • A. Goldfien and R. Karler, Effect of light on fluorescence of ethylenediamine derivatives of epinephrine and norepinephrine, Science 127, 1292 (1958).

    Google Scholar 

  • M. P. Keemann, W. P. Kleitsch, and F. L. Humoeler, The determination of catechol amines in blood, Clin. Chem. 5, 239 (1959).

    Google Scholar 

  • G. Nadeau and L. P. Jloy, Fluorescent derivatives obtained by the reaction of ethylenediamine with epinephrine and norepinephrine, Nature 182, 180 (1958).

    Google Scholar 

  • M. Goldstein, A. J. Friedhoff, and C. Simmons, A method for the separation of catechol amines in urine, Experientia 15, 80 (1959).

    Google Scholar 

  • K. Yagi and T. Nagatsu, Condensation products of ethylenediamine with adrenaline, Nature 182, 822 (1959).

    Google Scholar 

  • C. Sobel and R. J. Hebry, Determination of catecholamines (adrenaline and nor adrenaline) in urine and tissues, Amer. J. Clin. Path. 27, 240 (1957).

    Google Scholar 

  • L. Peyrin and J. Vial, Etude physicochimique de substances tensives rencontrées dans un pheochromocytome, Bull. Soc. Chim. Biol. 40, 1637 (1958).

    Google Scholar 

  • A. Carlsson and B. Waldeck, Fluorimetric method for the determination of dopamine (3-hydroxy tyramine), Acta Physiol. Scand. 44, 293 (1958).

    Google Scholar 

  • A. S. Joerdsma, J. A. Oates, P. Zaltzman, and S. Udenfriend, Identification and assay of urinary tryptamine; Application as an index of monoamine oxidase inhibition in man, J. Pharm. Exp. Ther. 126, 217 (1959).

    Google Scholar 

  • A. S. Joerdsma, W. M. King, L. C. Leeper, and S. Udenfriend, Demonstration of the 3-methoxy analogue norepinephrine in man, Science 127, 876 (1958).

    Google Scholar 

  • M. Goldstein, A. J. Friedhoff, and C. Simmons, A method for the separation and estimation of catecholamines in urine, Experientia 15, 80 (1959).

    Google Scholar 

  • R. B. Johnson, An improved method for the chemical determination of urinary catecholamines, J. Lab. Clin. Med. 51, 956 (1958).

    Google Scholar 

  • G. D. Miller, J. A. Johnson, and B. S. Miller, Fluorometric micro method for the determination of tryptophane, Anal. Chem. 28, 884 (1956).

    Google Scholar 

  • J. V. Kostir, A fluorescent reaction of tryptophane, Nature 160, 266 (1947).

    Google Scholar 

  • J. L. Chen, J. D. Medler, and R. A. Harte, Formation of fluorescing substances from amino acids, J. Amer. Chem. Soc. 70, 3145 (1948).

    Google Scholar 

  • H. Tauber, A new color test for tryptophane, J. Amer. Chem. Soc. 70, 2615 (1948).

    Google Scholar 

  • M. Gordon and K. M. Mitchell, A fluorometric method for the estimation of tryptophane, J. Biol. Chem. 180, 1065 (1959).

    Google Scholar 

  • A. R. Patton and E. M. Foreman, pH-Fluorescence of pyrolyzed amino acids, Science 107, 113 (1948).

    Google Scholar 

  • D. E. Doggan and S. Udenfriend, The spectrophotofluorimetric determination of tryptophane in plasma and of tryptophane and tyrosine in protein hydrolysates, J. Biol. Chem. 223, 313 (1956).

    Google Scholar 

  • F. W. Terale and G. Weber, Ultraviolet fluorescence of the aromatic amino acids, Biochem. J. 65, 476 (1957).

    Google Scholar 

  • A. White, Effect of pH on fluorescence of tyrosine, tryptophane and related compounds, Biochem. J. 71, 217 (1959).

    Google Scholar 

  • E. Fujimori, On the emission of tryptophane, Biochim. Biophys. Acta 40, 251 (1960).

    Google Scholar 

  • T. P. Waalkes and S. Udenfriend, Fluorimetric method for the estimation of tyrosine in plasma and tissues, J. Lab. Clin. Med. 50, 733 (1957).

    Google Scholar 

  • R. Mavrodineamu, W. W. Sanford, and A. E. Hitchcock, Use of fluorescence for the estimation of substances separated on paper by partition chromatography, Contrbs. Boyce Thompson Inst. 18, 167 (1955).

    Google Scholar 

  • H. Weissbach, W. King, A. S. Joerdsma, and S. Udenfriend, Formation of indole-3-acetic acid and tryptamine in animals — A method for estimation of indole-3-acetic acid in tissues, J. Biol Chem. 234, 81 (1959).

    Google Scholar 

  • Y. V. Takitin and K. L. Povoloskaya, Fluorometric method for the determination of heteroauxin in plants, Fiziol. Rasten. Akad. Nauk. SSR. 4, 285 (1957).

    Google Scholar 

  • T. P. Waalkes and H. Coburn, Conversion of serotonin (5-hydroxy-tryptamine) to 5-hydroxy indole acetic acid by rabbit blood, Proc. Soc. Exp. Med. 99, 742 (1958).

    Google Scholar 

  • J. B. Jepson and B. J. Stevens, Fluorescence test for serotonin and other tryptamines, Nature 172, 772 (1953).

    Google Scholar 

  • R. Kuntzman, P. A. Shore, D. Bogdanski, and B. B. Broide, Micro-analytical procedures for fluorometric assay of brain dopa-5 htp decarboxylase, norepinephrine and serotonin, and a detailed mapping of decarboxylase activity in brain, J. Neurochem. 6, 226 (1960).

    Google Scholar 

  • W. G. Rice and J. Mitchener, Histochemical evidence of 5-hydroxytryptamine in a dog mast cell tumour, Nature 189, 767 (1961).

    Google Scholar 

  • S. Udenfriend, D. F. Bogdanski, and H. Weissbach, Fluorescence characteristics of 5-hydroxytryptamine (serotonin), Science 122, 972 (1955).

    Google Scholar 

  • S. Udenfriend, H. Weissbach, and C. T. Clark, The estimation of 5-hydroxytryptamine (serotonin) in biological tissues, J. Biol. Chem. 215, 337 (1955).

    Google Scholar 

  • D. F. Bogdanski, A. Pletscher, B. B. Brodioe, and S. Udenfriend, Identification and assay of serotonin in brain, J. Pharm. Exp. Therap. 117, 82 (1956).

    Google Scholar 

  • S. Udenfriend, H. Weissbach, and B. B. Brodie, Assay of serotonin and related metabolites, enzymes and drugs, Methods of Biochemical Analysis Vol. 6, 95 (Interscience Publ. New York).

    Google Scholar 

  • S. Udenfriend, H. Weissbach, and B. B. Brodie, Assay of serotonin and related metabolites, enzymes and drugs, Methods of Biochemical Analysis Vol. 6, 95 (1958) (Interscience Publ. New York).

    Google Scholar 

  • H. Weissbach, J. P. Waalkes, and S. Udenfriend, A simplified method for measuring serotonin in tissues; simultaneous assay of both serotonin and histamine, J. Biol. Chem. 230, 865 (1958).

    Google Scholar 

  • H. Weissbach, B. G. Redfield, and J. Axelrod, Biosynthesis of melatonin; enzymic conversion of serotonin to N-acetyl-serotonin, Biochim. Biophys. Acta 43, 352 (1960).

    Google Scholar 

  • T. P. Waalkes, A. S. Joerdsma, C. R. Crevelting, H. Weissbach, and S. Udenfriend, Serotonin, norepinephrine and related compounds in bananas, Science 127, 648 (1958).

    Google Scholar 

  • S. L. Jacobs, C. Sobel, and R. J. Henry, Specificity of the trihydroxyindole method for determination of urinary catecholamines, J. Clin. Endocrinology Metabolism 21, 305 (1961).

    Google Scholar 

  • H. S. Prince, G. Rowley, and D. Jameson, Spectrofluorometric studies of 5-hydroxy indoles and related compounds, Science 125, 442 (1957).

    Google Scholar 

  • H. Sprince et al., Detection and isolation of indole acetamide from human urine; Results with schizophrenic and normal subjects, J. Lab. Clin. Med. 57, 763 (1961).

    Google Scholar 

Aromatic Hydrocarbons

  • L. Roth, Phys. Rev. 75, (2) 983 (1949).

    Google Scholar 

  • J. Ferguson and W. G. Sneider, The polarized fluorescence of very thin anthracene crystals, Canad. J. Chem. 36, 1078 (1958).

    Google Scholar 

  • B. Stevens, E. Hutton, and G. Porter, Spectrum of delayed fluorescence in phenanthrene vapour, Nature 185, 917 (1960).

    Google Scholar 

  • I. Berenblum and R. Schoental, Fluorescence spectrography as an aid in the identification of compounds, J. Chem. Soc. London 1946, 1017.

    Google Scholar 

  • E. V. Shpol’skii, A. A. Iljina, and V. V. Basilevich, Fluorescence spectra of some polycyclic aromatic hydrocarbons, Izvest. Akad. Nauk SSSR. Ser. Fiz. 12, 519 (1948).

    Google Scholar 

  • R. Schoental and J. Y. Scott, Fluorescence spectra of polycyclic aromatic hydrocarbons in solution, J. Chem. Soc. London 1949, 1683.

    Google Scholar 

  • E. V. Shpol’skii, A. A. Iljina, and V. V. Basilevich, Fluorescence spectra of some polycyclic hydrocarbons at liquid-air temperature, Izvest. Akad. Nauk SSSR. Ser. Fiz. 14, 511 (1950).

    Google Scholar 

  • J. H. Chaudet, Fluorescence analysis for polycyclic aromatic hydrocarbons, J. Amer. Chem. Soc. 130th meeting — Atlantic City (1956).

    Google Scholar 

  • A. A. Iljina, Fluorescence spectrum analysis of tars, J. Anal. Chem. USSR. 5, 90 (1950).

    Google Scholar 

  • A. A. Iljina, Spectral fluorescent methods of determination of cancerogenic products in tars, Izvest. Akad. Nauk SSSR. Ser. Fiz. 15, 771 (1951).

    Google Scholar 

  • H. J. Cahnmann, Detection and quantitative determination of benzo[a]pyrene in american shale oil, Anal. Chem. 27, 1235 (1955).

    Google Scholar 

  • N. O. Berg and G. Norden, On the spectral fluorescence and absorption of 3,4-benzopyrene in the visible region, Acta Pathol. Microbiol. Scand. 36, 193 (1955).

    Google Scholar 

  • R. W. L. Kimber, An examination of undistilled ((Schroeter Tan)), Chem. and Ind. 1960 657.

    Google Scholar 

  • B. A. Neskovic and V. Soskic, Detection of small quantities of 3,4-benzopyrene directly from Chromatographic paper, Nature 190, 1199 (1961).

    Google Scholar 

  • W. M. Bergolz, A. A. Iljina, and W. W. Basilevich, Die Fluoreszenzspektren von 3,4-Benzpyren und ihre Anwendung zu dessen Nachweis im tierischen Organismus, Biochimia (russ.) 14, 20 (1949).

    Google Scholar 

  • J. G. Chalmers, Fluorescent metabolites of 3,4-benzopyrene, Biochem. J. 63, 20P (1956).

    Google Scholar 

  • H. R. Bentely and I. G. Burgan, Polynuclear hydrocarbons in tobacco and in tobacco smoke. Part I.—3,4-benzopyrene, Analyst 83, 442 (1958).

    Google Scholar 

  • M. Wilk, Zum Mechanismus der chemischen Cancerogenese durch 3,4-Benzpyren, Biochem. Z. 333, 166 (1960).

    Google Scholar 

  • G. M. Badger et al. The formation of aromatic hydrocarbons at high temperatures, J. Chem. Soc. London 1958, 2449.

    Google Scholar 

  • B. Muel, M. Hubert-Habart, and Ng. Ph. Buu-Hoi, 3,4:9, 10-Dibenzopyrene: fluorescence spectrum and Chromatographic separation of 3,4-benzpyrene. J. chim. phys. 54, 483 (1957).

    Google Scholar 

  • M. J. Lyons, Presence of 1,2:3,4-dibenzopyrene in cigarette smoke, Nature 182, 178 (1958).

    Google Scholar 

  • B. L. Van Duuren, The fluorescence spectra of aromatic hydrocarbons and heterocyclic aromatic compounds, Anal. Chem. 32, 1436 (1960).

    Google Scholar 

  • K. F. Lang, M. Zahnder, and E. Theiling, Isotruxen, Chem. Ber. 93, 321 (1960).

    Google Scholar 

  • W. Friedrich and N. Koyenuma, Zur Frage der endogenen Entstehung krebserregender Stoffe beim Menschen, Naturwissenschaften 30, 145 (1942).

    Google Scholar 

  • Y. Hirsberg, Full luminescence at liquid-air temperature of methyl-1,2-benzanthracenes and methylbenzo[c]phenanthrenes, Anal. Chem. 28, 1954 (1956).

    Google Scholar 

  • J. A. Miller and C. A. Baumann, Effect of naphthacene on the fluorescence of hydrocarbons, Cancer Res. 3, 217 (1943).

    Google Scholar 

  • J. Sahu, The effect of temperature and viscosity on the fluorescence of solutions of some organic compounds, using u.v. excitation, J. Indian Chem. Soc. 37, 411 (1960).

    Google Scholar 

  • B. Vecerek, I. Hynie, and K. Kacl, Fluorimetrie. — V. Löscheffekt von Ketosubstanzen auf die Fluoreszenz einiger Naphthalinderivate, Coll. Czech. Chem. Comm. 25, 2221 (1960).

    Google Scholar 

  • R. W. L. Kimber, An examination of undistilled ((Schroeter Tar)), Chem. and Ind. 1960. 657.

    Google Scholar 

  • B. Muel and G. Lacroix, Caractérisation et dosage du 3,4-benzopyrène par spectrophotométrie de luminescence á 190°, Bull. Soc. Chim. France 1960, 2139.

    Google Scholar 

  • M. Wilk, Zum Mechanismus der chemischen Cancerogenese durch 3,4-Benzpyren, Biochem. Z. 333, 166 (1960).

    Google Scholar 

  • R. M. Hochstrasser, The effect of intramolecular twisting on the emission spectra of hindered aromatic molecules, Can. J. Chem. 39, 459 (1961)

    Google Scholar 

Pyridine and Quinoline Derivatives

  • E. De Ritter, F. W. Jahns, and S. H. Rubin, Fluorometric determination of ketotetrahydropyridines. — An improved method for urine, J. Amer. Pharm. Assoc. Sci. Ed. 38, 319 (1949).

    Google Scholar 

  • E. Perlman, A quantitative method for the determination of anti-histaminic compounds containing the pyridine radical, J. Pharm. Exp. Therap. 95, 465 (1949).

    Google Scholar 

  • D. E. Dugan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • N. K. Pechenkin, Qualitative fluorescence test for cinchophen in pharmaceutical preparations and biological objects, Aptechnoe Delo Nr. 5, 28 (1952).

    Google Scholar 

  • E. M. Bickoff, J. Guggolz, A. L. Livingston, and C. R. Thompson, Determination of 6-ethoxy-1, 2-dihydro-2, 2, 4-trimethylquinoline in biological materials, Anal. Chem. 28, 376 (1956).

    Google Scholar 

  • B. L. Mellet and L. A. Woods, Plasma levels excretion and fate of 4-(p-dimethylaminostyryl) quinoline dihydrochloride in the dog, J. Pharm. Exp. Ther. 122, 52A (1958).

    Google Scholar 

  • K. Satoh and J. M. Price, Fluorometric determination of kynurenic acid and xanthurenic acid in human urine, J. Biol. Chem. 230, 781 (1958).

    Google Scholar 

  • D. E. Dugan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • F. Feigl, Mikronachweis von 8-Hydroxychinolin und dessen Derivaten, Mikrochemie 39, 404 (1952).

    Google Scholar 

  • Ch. C. Price, W. G. Jackson, and A. Pholand, The radiation-induced fluorescence spectra of certain quinoline derivatives, J. Amer. Chem. Soc. 70, 2983 (1948).

    Google Scholar 

  • J. L. Irvin and E. M. Irvin, A fluorometric method for the determination of pamaquin, SN-13276 and SN-3294, J. Biol. Chem. 174, 589 (1948).

    Google Scholar 

  • A. Spinks, Determination of antrycide, Biochem. J. 47, 299 (1950).

    Google Scholar 

  • A. Spinks, Fluorimetric determination of antrycide, Nature 163, 954 (1949).

    Google Scholar 

  • E. J. Bowen and J. Sahu, The fluorescence of acridine and acridone solutions, J. Chem. Soc. London 1958, 3716.

    Google Scholar 

  • A. E. Vittolo, Reazioni di fluoreszenza e di precipitazione degli acridinici, Boll. Chim. Farm. 85, 97 (1946).

    Google Scholar 

  • L. Villemey, Etude spectrographique de la lumière de fluorescence des dérivés monosubstitués de Vacridone en solution, C.R. Acad. Sci. 230, 303 (1950).

    Google Scholar 

  • L. Villemey, Etudes des réactions entre la fluorescence et la nature des substituents sur la molécule de Vacridone, Ann. Chim. 5 [12], 642 (1950).

    Google Scholar 

  • J. G. Devi, N. L. Khorana, and M. R. Padhye, Fluorometric method for the determination of 5-amino-acridine chloride, Indian J. Pharm. 15, 3 (1953).

    Google Scholar 

  • G. Weber and D. J. R. Laurence, Fluorescent indicators of adsorption in aqueous solution and on the solid phase, Biochem. J. 56, XXXI (1954).

    Google Scholar 

  • A. J. Kostyakova Fluorescence method for qualitative and quantitative determination of acridine and rivanol in biological substances, Zhur. Anal. Khim. 6, 251 (1951).

    Google Scholar 

  • M. E. Auerbach and H. W. Eckert, The photofluorometric determination of atebrin, J. Biol. Chem. 154, 597 (1944).

    Google Scholar 

  • B. B. Brodie, S. Udenfriend et al., The estimation of basic organic compounds in biological material. II. — Estimation of fluorescent compounds. III.Estimation by conversion to fluorescent compounds, J. Biol. Chem. 168, 311 (1947).

    Google Scholar 

  • V. G. Mikailov, A very simple fluorescent method of determination of acridine (mepacrine) and stilbamidine in urine, Lab. Delo. (4), 15 (1957).

    Google Scholar 

  • R. H. Wiley, C. H. Jarboe, and F. N. Hayes, Substituted 4,7-phenanthrolines and benzo [f]quinolines as scintillation solutes, J. Org. Chem. 23, 268 (1958).

    Google Scholar 

  • T. Momose, Y. Ueda, and K. Watanabe Organic analysis XIX. — Micro-fluorimetric estimation of isonicotinic acid hydrazide, J. Pharm. Soc. Japan 80, 225 (1960).

    Google Scholar 

  • J. H. Peters, Studies on the metabolism of isoniazid. I. — Development and application of a fluorimetric procedure for measuring isoniazid in blood plasma, Amer. Rev. Resp. Diseases 81, 485 (1960).

    Google Scholar 

Pyrrole Derivatives

  • K. Weber and F. Valic, Beitrag zur Methodik der fluorometrischen Porphyrinbestimmung, Rec. Try. Chim. Pays-Bas 74, 556 (1955).

    Google Scholar 

  • M. Noering, Der qualitative Porphyrinnachweis (Porphyrin-Schnellmethode nach Brugsch), Z. Ges. Inn. Med. 4, 182 (1949).

    Google Scholar 

  • H. Kliewe, Über die Anwendung der Phosphorsäure zur fluorometrischen Kennzeichnung von reinen Porphyrinen, Z. Ges. Inn. Med. 3, 543 (1948).

    Google Scholar 

  • K. Weber and I. Ruzdic, Beitrag zur fluorometrischen Bestimmung der Harnporphyrine, Experientia 7, 354 (1951).

    Google Scholar 

  • R. S. Becker and M. Kasha, Luminescence spectroscopy of porphyrin-like molecules including the chlorophylls, J. Amer. Chem. Soc. 77, 3669 (1955).

    Google Scholar 

  • R. Livingston, L. Thompson, and M. V. Ramarao, Quenching of the fluorescence of solutions of porphyrins and of chlorophyll, J. Amer. Chem. Soc. 74, 1073 (1952).

    Google Scholar 

  • R. Livingston and C. L. Ke, Quenching of the fluorescence of chlorophyll-a solutions, J. Amer. Chem. Soc. 72, 909 (1950).

    Google Scholar 

  • K. Weber, et al, The fluorometric determination of porphyrin, Rec. Trav. Chim. Pays-Bas 74, 556 (1955).

    Google Scholar 

  • R. L. Lipson, E. J. Baldes, and A. M. Olsen, The use of a derivative hematoporphyrin in tumor detection, J. Natl. Cancer Inst. 26, 1 (1961).

    Google Scholar 

  • R. H. Goodwin, Fluorometric method for estimating small amounts of chlorophyll-a. Anal. Chem. 19, 789 (1949).

    Google Scholar 

  • I. S. Singh and R. S. Becker, The π-π-phosphorescence of chlorophylls a and b, J. Amer. Chem. Soc. 82, 2083 (1960).

    Google Scholar 

  • R. Livingstone, W. F. Watson, and J. McArdle, Activation of fluorescence of chlorophyll solutions, J. Amer. Chem. Soc. 71, 1542 (1949).

    Google Scholar 

  • G. Tollin, E. Fujimori, and M. Calvin, Activation and emission spectra of the luminescence of green plant materials, Nature 181, 1266 (1958).

    Google Scholar 

  • S. S. Brody, New excited state of chlorophyll, Science 128, 838 (1958).

    Google Scholar 

  • H. F. W. Kirkpatrick, A modified Schlesinger test for urobilin in urine, Lancet 264, 71 (1953).

    Google Scholar 

  • M. O. L. Crowe and A. Walker, Fluorescence and absorption spectroscopy applied in identification of pigment synthesized by micro-organisms and isolated by chromatography; coproporphyrin type I synthesized by the tubercle bacillus, J. Opt. Soc. Amer. 47, 1044 (1957).

    Google Scholar 

  • O. A. Germek, Determination of urinary coproporphyrins, Ann. Fac. Med. San Paulo 9, 137 (1951).

    Google Scholar 

  • S. Fukumura and Y. Fujsawa, Urinary coproporphyrins Igoku to Seibutsugaku 24, 161 (1952).

    Google Scholar 

  • S. Schwartz, L. Ziewe, and C. J. Watson, An improved method for the determination of urinary coproporphyrin and an evaluation of factors influencing the analysis, J. Lab. Clin. Med. 37, 843 (1951).

    Google Scholar 

  • M. Polonovski, R. G. Busnel, and M. Pesson, La fluorescyanine, pigment á fluorescence bleue des écailles de cyprimidés, C.R. Acad. Sci. Paris 217, 163 (1943).

    Google Scholar 

Steroids (without Vitamin D, see under Vitamins, without steroid alkaloids, see under alkaloids)

  • C. Sobel, R. J. Henry, O. J. Golub, and M. Rudy, Chemical determination of aldesterone in urine, J. Clin. Endocrin. 19, 1302, (1959).

    Google Scholar 

  • J. W. Jailer, A fluorimetric method for the clinical determination of estrone and estradiol, J. Clin. Endocrin. 8, 564 (1948).

    Google Scholar 

  • G. W. Oertel, Quantitative determination of estrogens, Naturwissenschaften 47, 182 (1960).

    Google Scholar 

  • R. J. Boscott, New colour and fluorescence reactions in the steroid and synthetic oestrogen, Nature 162, 577 (1948).

    Google Scholar 

  • J. R. K. Preedy and E. H. Aitken, Column partition chromatography of estrone, estradiol-17β, and estriol in phenolic extracts of urine: fluorescence characteristics of interfering material, J. Biol. Chem. 236, 1297 (1961).

    Google Scholar 

  • R. W. Bates and H. Cohen, Quantitative fluorescent micro-method for the determination of natural estrogens. Endocrinology, 47, 182 (1950).

    Google Scholar 

  • E. Eichenberger, Eine fluoroskopische Methode zur Bestimmung von Oestron, Oestradiol und Oestriol, Gynaecologia 128, 22 (1949).

    Google Scholar 

  • L. L. Engel, W. R. Slaunwhite, P. Carter, and J. T. Nathansen, The separation of natural estrogens by counter current distribution, J. Biol. Chem. 185, 255 (1950).

    Google Scholar 

  • W. R. Slaunwhite, L. L. Engel, P. C. Olmsted, and P. Carter, The fluorescence and extinction and partition coefficients of estrogens, J. Biol. Chem. 191, 627 (1951).

    Google Scholar 

  • R. W. Bates and H. Cohen, Experimental basis for selecting the optimal conditions for quantitative fluorometry of natural estrogens, Endocrinology 47, 166 (1950).

    Google Scholar 

  • R. W. Bates and H. Cohen, Fluorescence spectra of natural estrogens and their application to biological extracts, Endocrinology 47, 182 (1950).

    Google Scholar 

  • L. Viale and O. Ferrini, Fluorometric determination of urinary estrogens, Arch. E. Maragliano Patol. e Clin. 6, 433 (1951).

    Google Scholar 

  • A. Bachetti, C. Conti, and V. Marescotti, Fluorometrische Bestimmung von Oestrogenen im Harn, Folia Endocrinology 5, 161 (1952).

    Google Scholar 

  • H. Braunsberg, The fluorometric determination of estrogens, J. Endocrinology 8, 11 (1952).

    Google Scholar 

  • J. W. Goldziueher, J. M. Bodenchuk, and P. Nolan, The fluorescence reactions of steroids, J. Biol. Chem. 199, 621 (1952).

    Google Scholar 

  • E. H. Aitken and J. R. Preedy, The fluorescence and absorption spectra of estrone, estradiol-17β and estriol compounds, J. Endocrinology 9, 251 (1953).

    Google Scholar 

  • C. Heusghem, Dosage des oestrogènes de l’urine normale par fluorescence, J. Pharm. Belg. 7, 396 (1952).

    Google Scholar 

  • C. Heusghem, Elimination of the extracts by hydrogen peroxides, Nature 173, 1043 (1954).

    Google Scholar 

  • R. W. Bates, Spectrophotometric and fluorometric methods for the determination of estrogenic steroids, Recent Progr. Hormone Res. 9, 95 (1954).

    Google Scholar 

  • H. Braunsberg, S. B. Osborn, and M. J. Stern, The determination of estrogens in body fluids. — I. Further observations on the fluorimetric estimation of estrone, estradiol and estriol, J. Endocrinology 11, 177 (1954).

    Google Scholar 

  • J. W. Goldzieher and P. K. Besch, Fluorescence and absorption spectra of some corticosteroids in sulfuric acid and phosphoric acid, Anal. Chem. 30, 962 (1958).

    Google Scholar 

  • H. Braunsberg and V. H. T. James, Some observations on fluorometric determinations, Analyt. Biochem. J. 1, 443 (1960).

    Google Scholar 

  • M. Finkelstein, A quantitative fluorescence-test for the determination of corticosteroids, Nature 169, 929 (1952).

    Google Scholar 

  • M. L. Sweat, Sulfonic acid-induced fluorescence of corticosteroids, Analyt. Chem. 26, 773 (1954).

    Google Scholar 

  • P. Hedner, Experiences with a fluorimetric method for determining corticosteroids in man and rat, Acta Pharmacol. Toxicol. 18, No. 1, 65 (1961).

    Google Scholar 

  • H. E. Carr and W. J. Reddy, Reversed phase partition chromatography of steroids, Anal. Biochem. 2, 152 (1961).

    Google Scholar 

  • A. L. Livingston, E. M. Bickoff, J. Guggolz, and C. R. Thompson, Alfalfa estrogens. Quantitative determination of coumestrol in fresh and dried alfalfa, J. Agr. Food Chem. 9, 135 (1961).

    Google Scholar 

  • J. W. Goldzieher, J. M. Bodenchuk, and P. H. Nolan, The fluorescence reactions of steroids, Anal. Chem. 26, 853 (1954).

    Google Scholar 

  • J. W. Goldzieher, J. M. Bodenchuk, and P. H. Nolan, The fluorescence reactions of steroids, Anal. Chem. 26, 853 (1954).

    Google Scholar 

  • K. J. Masek and J. Janda, A method for the determination of estrogens in urine applicable in the clinic, Casopis Lekarn Ceskych 94, 969 (1955).

    Google Scholar 

  • As. Arrhenius, Fluorescence of steroids, Acta Chem. Scand. 10, 154 (1956).

    Google Scholar 

  • H. Kalant, Chromogenic and fluorogenic reactions of steroids in concentrated acids, Biochem. J. 63, 10P (1956).

    Google Scholar 

  • H. S. Strickler, R. C. Grauer, and M. C. Caughey, Effect of time on fluorescing power of estrogenic steroids, Anal. Chem. 28, 1240 (1956).

    Google Scholar 

  • E. P. Smith, W. M. Dickson, and E. R. Erb, Fluorimetric estimation of estrogens in bovine urine, J. Dairy Sci. 39, 162 (1956).

    Google Scholar 

  • N. Zenker and D. E. Bernstein, The estimation of small amounts of corticosterone in rat plasma, J. Biol. Chem. 231, 695 (1958).

    Google Scholar 

  • J. W. Goldzieher and P. K. Besch, Fluorescence and absorption spectra of some corticosteroids in sulfuric and phosphoric acids, Anal. Chem. 30, 963 (1958).

    Google Scholar 

  • H. Kalant, Chromogenic and fluorogenic reactions of adrenocortical and other steroids in concentrated acids, Biochem. J. 69, 79 (1958).

    Google Scholar 

  • R. H. Silber, R. D. Busch, and R. Oslapas, Fractional procedure for estimation of corticosterone and of hydrocortisone, Clin. Chem. 4, 278 (1958).

    Google Scholar 

  • G. Ittrich, Eine neue Methode zur chemischen Bestimmung der oestrogenen Hormone im Harn, Z. Physiol. Chem. 312, 1 (1958).

    Google Scholar 

  • T. El-Attar, A simplified physicochemical method for determination of human urinary estrogens, Nature 183, 1607 (1959).

    Google Scholar 

  • J. C. Touchstone, R. A. Keisman, A. F. Marcantonio, and J. W. Greene, Phosohoryl chloride enhancement of the fluorescence of steroids in sulfuric acid, Anal. Chem. 30, 1707 (1958).

    Google Scholar 

  • R. Scholler, L. Longchampt, and M. F. Jayle, Dosage flurescimétrique des phénolsteroides en milieu acide, Bull. Soc. Chim. France 1960, 189.

    Google Scholar 

  • R. Scholler, L. Longchampt, and M. F. Jayle, Dosage fluor escimétrique des phénolsteroides en milieu acide, Bull. Soc. Chim. France 1960, 189.

    Google Scholar 

  • M. Sartini Lucas, Identification of follicular hormones, Rev. Quim. Farm. (Rio de Janeiro) 10, 21 (1945).

    Google Scholar 

  • S. Bruno, Dosaggio del testosterone, Boll. Soc. Ital. Biol. Sper. 34, 63 (1958).

    Google Scholar 

  • T. Nakao and Y. Aizawa, Microfluorometric separatory determination of estrogens and urine, Endocrinology Japan 3, 92 (1956).

    Google Scholar 

  • W. R. Slaunwhite Jr. et al., Fluorescence and absorption spectra of estrones heated in sulfuric acid, J. Biol. Chem. 201, 615 (1953).

    Google Scholar 

  • T. Nakao and Y. Aizawa, Microfluorometry of natural estrogens, Endocrinology 2, 13 (1955).

    Google Scholar 

  • A. Mariani and L. Tentori, Fluorometric determination of estrogenic substances. — Estrone, Rend. 1st. Super Sanitá 11, 1176 (1948), 43, 6687d (1949).

    Google Scholar 

  • T. Nakao, Y. Aizawa, and H. Vi, Fluorescence spectra of steroids especially corticosteroids, Jikeikai Med. 1, 81 (1954).

    Google Scholar 

  • L. Fierro-del-Rio and D. Arrieta-Aupart, Estimation of estrone with antimony trichloride, Rev. Inst. Salubridad y Enfermed Trop. 10, 167 (1949).

    Google Scholar 

  • G. M. Schull, J. L. Sardinas, and R. C. Nubel, Paper chromatography of steroid compounds, Arch. Biochem. Biophys. 37, 186 (1952).

    Google Scholar 

  • E. Epstein, W. O. Maddock, and A. J. Boyle, p-Toluene sulfonic acid spot plate test for steroids, Anal. Chem. 29, 1548 (1957).

    Google Scholar 

  • R. H. Herman and J. Bruton, Reaction of antimony pentachloride with pregnane-3α,17α, 20α-triol, pregnane-3α,17α,20α-triol-11-one and other adrenal cortical steroids, Nature 190, 444 (1961).

    Google Scholar 

  • J. C. Touchstone and C. Murawec, Enhancement of the fluorescence of progesterone and other steroids in sulfuric acid, Anal. Chem. 32, 822 (1960).

    Google Scholar 

  • J. B. Garst, J. F. Nyc, D. M. Maron, and H. B. Friedgood, Quantitative fluorometric method for the determination of the natural estrogens, J. Biol. Chem. 186, 119 (1950).

    Google Scholar 

  • A. Puck, Erfahrungen mit der Bestimmung der Oestrogene durch Fluoreszenz nach papier-chromatographischer Trennung, Klin. Wochenschrift 33, 865 (1955).

    Google Scholar 

  • D. Abelson and Ph. K. Bondy, Fluorometric determination of Δ 4-3-keto-steroids, Arch. Biochem. Biophys. 57, 208 (1955).

    Google Scholar 

  • P. J. Ayres, S. A. Simpson, and J. F. Tait, A simple fluorimeter adaptable for measurement of fluorescence in solution or on paper chromatograms, Biochem. J. 62, 8P (1956).

    Google Scholar 

  • O. W. Smith, Estrogens in the ovarian fluids of normally menstruating women, Endocrinology 67, 698 (1960).

    Google Scholar 

  • P. J. Ayres, S. A. Simpson, and J. F. Tait, A fluorescence method for the microanalysis of Δ 4-oxosteroids on paper chromatograms, Biochem. J. 65, 647 (1957).

    Google Scholar 

  • D. E. Dugan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrofluorometric study of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • Ch. Dhere and L. Laszi, Etude spectro chimique (absorption et fluorescence) de la reaction de Salkowski. — Cholesterol, C.R. Soc. Biol. Paris 142, 1422 (1948).

    Google Scholar 

  • D. B. McDougal and H. S. Farmer, A fluorometric method for total serum cholesterol, J. Lab. Clin. Med. 50, 485 (1957).

    Google Scholar 

  • K. J. Carpentier, A. Gotsis, and D. M. Hegsted, Estimation of total cholesterol in serum by a micro method, Clin. Chem. 3, 233 (1957).

    Google Scholar 

  • W. W. Tourtelotte, B. A. Skrentny, and R. N. De Jong, A study of lipids in the cerebrospinal. — IV. The determination of free and total cholesterol, J. Lab. Clin. Med. 54, 197 (1959).

    Google Scholar 

  • Ch. Dhere and L. Laszi, Etude spectrochimique (absorption et fluorescence) de la réaction de Salkowski, C. R. Soc. Biol. Paris 143, 444 (1949).

    Google Scholar 

  • H. Bernard and Y. Broer, Fluorescence de certains acids biliaires après chauffage en milieu sulfurique, Bull. Soc. Chim. Biol. 42, 99 (1960).

    Google Scholar 

  • M. D. Turner, E. C. Osborn and I. P. D. Wootton, A fluorescent reaction with bile acids, Biochem. J. 31, 31 (1957).

    Google Scholar 

  • M. Pesez, Dosage fluorimétrique de l’acide cholique, Ann. Pharm. France 11, 670 (1953).

    Google Scholar 

  • J. B. Carey and H. S. Bloch, The rapid identification of bile acids with an antimony trichloride color reagent, J. Lab. Clin. Med. 44, 486 (1954).

    Google Scholar 

  • S. Mitsuhara, A new fluorescent reaction of keto bile acids, J. Japan. Biochem. Soc. 22, 106 (1950).

    Google Scholar 

  • S. J. Levin, J. L. Irvin, and C. G. Johnston, Spectrofluorometric determination of total bile acids in bile, Anal. Chem. 33, 856 (1961).

    Google Scholar 

  • K. B. Jensen, Fluorimetric determination of gitoxigenin, Acta Pharm. Tox. 8, 101 (1952).

    Google Scholar 

  • K. B. Jensen, Paper Chromatographic separation and fluorometric determination of gitoxin, gitoxigenin and purpurea glycoside B, Acta Pharm. Tox. 8, 110 (1952).

    Google Scholar 

  • Y. Sasakawa, Studies on digitalis.-V. Products in the reaction of B series glycosides purpurea L. with Jensen’s reagent for fluorescence determinations, J. Pharm. Soc. Japan 79, 575 (1959).

    Google Scholar 

  • J. F. A. Fruytier and J. A. C. Van Pinxteren, Fluorometric determination of gitoxin, Pharm. Weekblad. 89, 99 (1954).

    Google Scholar 

  • K. B. Jensen, Fluorometric determination of digitoxigenin, Acta Pharm. Tox. 9, 66 (1953).

    Google Scholar 

  • K. Moza and S. K. Ganguly, Detection of digoxin and its hydrolytic products, J. Sci. Industr. Res. 158, 17 (1956).

    Google Scholar 

  • K. B. Jensen, a) Paper chromatography of cardiac glycoside and aglycones from digitalis purpurea, Acta Pharm. Tox. 9, 99 (1953).

    Google Scholar 

  • K. B. Jensen, b) Paper chromatography of new glycosides in digitalis purpurea, Acta Pharm. Tox. 9, 275 (1953).

    Google Scholar 

  • K. B. Jensen, c) Paper Chromatographic separation and fluorometric determination of cardiac glycosides and aglycones from digitalis purpurea, Acta Pharm. Tox. 10, 69 (1954).

    Google Scholar 

  • K. B. Jensen, c) Paper Chromatographic separation and fluorometric determination of cardiac glycosides and aglycones from digitalis purpurea, Acta Pharm. Tox. 10, 347 (1954)

    Google Scholar 

  • K. B. Jensen, c) Paper Chromatographic separation and fluorometric determination of cardiac glycosides and aglycones from digitalis purpurea, Acta Pharm. Tox. 12, 20 (1956)

    Google Scholar 

  • K. B. Jensen, c) Paper Chromatographic separation and fluorometric determination of cardiac glycosides and aglycones from digitalis purpurea, Acta Pharm. Tox. 12, 20, 27 (1956)

    Google Scholar 

  • K. B. Jensen, c) Paper Chromatographic separation and fluorometric determination of cardiac glycosides and aglycones from digitalis purpurea, Acta Pharm. Tox. 12, 27 (1956)

    Google Scholar 

  • K. B. Jensen, c) Paper Chromatographic separation and fluorometric determination of cardiac glycosides and aglycones from digitalis purpurea, Acta Pharm. Tox. 13, 381 (1957)

    Google Scholar 

  • M. Pesez, Dosage fluorimétrique du gitoxoside, Ann. Pharm. France 8, 746 (1950).

    Google Scholar 

  • A. Petit, M. Pesez, P. Bellet, and G. Amirad, Sur le digitoxoside pur, Bull. Soc. Chim. France 17, 288 (1950).

    Google Scholar 

  • H. Schindler, Über die Verfälschung von Adonis vernalis L. durch Adonis aestivalis L., Süddeutsche Apotheker-Zeitung 88, 427 (1948).

    Google Scholar 

  • L. J. Sciarini and W. T. Salter, Chemical correlatives of digitalis potency in man, cat and pigeon, J. Pharmacol. Exp. Therap. 101, 167 (1951).

    Google Scholar 

Vitamins and Chemically Related Compounds

  • A. Fujita and M. Aoyama, Fluorimetric determination of Vitamin A, Vitamins 4, 15, 174 (1951).

    Google Scholar 

  • D. E. Dugan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • H. Sabotka, S. Kann, and W. Winternitz, Fluorophotometric analysis of Vitamin A esters, J. Biol. Chem. 152, 635 (1944).

    Google Scholar 

  • A. Fujita and M. Aoyama, Fluorometric determination of Vitamin A, J. Biochem. Japan 38, 271 (1951).

    Google Scholar 

  • A. Fujita and M. Aoyama, J. Biochem. Japan 40, 157 (1953).

    Google Scholar 

  • N. K. De, Fluorometric method for Vitamin A assay, Indian J. Med. Res. 43, 391 (1955).

    Google Scholar 

  • H. N. Brocklesby and N. J. Rogers, Fluorometric analysis, Fisheries Res. Board Can. Progress Repts. Pacific Coast Stas. 50, 4 (1941).

    Google Scholar 

  • D. F. Clausen and R. E. Brown, Determination of thiamine in bread by the thiochrome method [A comparison of phosphatase-containing enzyme preparation), Ind. Eng. Chem. Anal. Ed. 15, 100 (1943).

    Google Scholar 

  • R. Mukudan and V. B. Rama Sastri, Indian J. Med. Res. 36, 405 (1948).

    Google Scholar 

  • S. H. Rubin, E. De Ritter, E. Febbraro, and F. W. Jahns, J. Cereal. Chem. 25, 52 (1948).

    Google Scholar 

  • J. Bowman, Intern. Rev. Vitamin Res. 19, 386 (1948).

    Google Scholar 

  • M. Hoshino and H. Ueno, Ann. Repts. Takeda Res. Lab. 8, 102 (1949).

    Google Scholar 

  • Y. Nose and T. Tashiro, J. Japan. Biochem. Soc. 21, 130 (1949).

    Google Scholar 

  • F. G. Stock, The estimation of vitamin B 1 using the fluorimeter; the preparation of the standard curve, Analyst 75, 499 (1950).

    Google Scholar 

  • H. N. Ridyard, Theoretical and practical considerations in the determination of aneurine (vitamin B1) with special reference to the recovery factor, Analyst 75, 634 (1950).

    Google Scholar 

  • L. Domange and S. Longuevalle, Separation of vitamin B 1 from other interfering fluorescent substances. Mixture of vitamin B 1 and sodium salicylate, Pharm. Weekblad 90, 119 (1955).

    Google Scholar 

  • W. E. Ohnesorge and L. B. Rogers, Fluorometric determination of thiamine and riboflavine in mixture, Anal. Chem. 28, 1017 (1956).

    Google Scholar 

  • R. A. Brown, E. Hartzler, G. Peacock, and A. D. Emmett, Determination of vitamin B 1 (thiamine) in extracts and concentrates, Ind. Eng. Chem. Anal. Ed. 15, 497 (1943).

    Google Scholar 

  • H. N. Ridyard, Analyst 74, 18 (1948).

    Google Scholar 

  • O. E. Kline, J. Assoc. Offic. Agr. Chemist 31, 455 (1948).

    Google Scholar 

  • A. B. Carlson, W. F. Neumann, and A. L. Underwood, Pamphlet Atomic Energy Comm. Oak Ridge M.D.D.C. 941 (1947).

    Google Scholar 

  • Y. De Heptinne and A. Wilmes, Determination of vitamin B 1 by the thiochrome method, Fermentation 1956, 3.

    Google Scholar 

  • R. Pleticha, Chromatographisch-polarographische Studie über Thiamin. — Fluorimetrische Messungen zur Frage des Ersatzes der enzymatischen Digestion durch saure Hydrolyse, Pharmazie 15, Nr. 3, 108 (1960).

    Google Scholar 

  • R. Patrick and J. F. H. Wright, Analyst 74, 303 (1949).

    Google Scholar 

  • L. Petit, The determination and the distribution of aneurine in wheat, in flour and in bread. Apparatus for measuring the fluorescence of solutions. Ann. Inst. Natl. Recherche Agron., Ser. A, Ann. Agron. 1, 41 (1950).

    Google Scholar 

  • H. Williams and F. Wokes, The fluorimetric assay of aneurine. A comparison of the United States Pharmacopoeia XIII and other methods, Quart. J. Pharm. Pharmacol. 20, 240 (1947).

    Google Scholar 

  • E. H. Mawson and S. Y. Thompson, A note on the estimation of vitamin B 1 in urine, Biochem. J. 43, 2 (1948).

    Google Scholar 

  • M. Beran and V. Sicko, Paper chromatography of vitamin B 1, Chem. Listy 45, 154 (1951).

    Google Scholar 

  • E. Dawson et al., Chemical analysis of aneurine in foodstuffs, Analyst 76, 127 (1951).

    Google Scholar 

  • R. Fried, Die Bestimmung von Vitamin B 1 in Gegenwart fluoreszierender Substanzen, Z. Physiol. Chem. 291, 57 (1952/ 1953).

    Google Scholar 

  • B. S. Wostmann and L. P. Knight, The effect of methyl alcohol on the conversion of thiamine to thiochrome, Experientia 16, 500 (1960).

    Google Scholar 

  • M. Fujiwara and K. Matsui, Determination of thiamine by the thiochrome reaction, Anal. Chem. 25, 810 (1953).

    Google Scholar 

  • K. V. Giri and S. Balakrishnan, Circular paper Chromatographic method for estimation of thiamine and riboflavin in multi vitamin preparations, Anal. Chem. 27, 1178 (1955).

    Google Scholar 

  • H. Wachsmuth, New reacting of vitamin B 1 Vitamin B 1 as a reagent, J. Pharm. Belge 5, 300 (1950).

    Google Scholar 

  • K. Yagi, T. Tabata, E. Kotaki, and T. Arakawa, Fluorometric. analysis of vitamins. — III. Fluorescence spectra of thiochrome and other similar fluorescent substances, Vitamins 9, 391 (1955).

    Google Scholar 

  • F. Kavanagh and R. H. Goodwin, The relationship between pH and fluorescence of several organic compounds, Arch. Biochem. Biophys. 20, 315 (1949).

    Google Scholar 

  • D. F. Clausen and R. E. Brown, Determination of thiaamine with the thiochrome method. Effects of temperature and dissolved oxygen on fluorescence of quinine standard and of thiochrome, Ind. Eng. Chem. Anal. Ed. 16, 572 (1944).

    Google Scholar 

  • P. Ellinger and M. Holden, Quenching effect of electrolytes on the fluorescence intensity of riboflavin and thiochrome, Biochem. J. 38, 147 (1944).

    Google Scholar 

  • R. E. Johnson, F. Sargent, P. F. Robinson and F. C. Consolazion, Estimation of riboflavin, thiamine and N 1-methylnicotinamide. — Rapid field methods, Ind. Eng. Chem. 17, 384 (1945).

    Google Scholar 

  • W. E. Ohnesorge and L. E. Rogers, Fluorometric determination of thiamine and riboflavin in mixture, Anal. Chem. 28, 1017 (1956).

    Google Scholar 

  • A. Gourevitch, Sur les mesures fluorimétriques de la concentration de la riboflavine, Bull. Soc. Chim. France 30, 711 (1948).

    Google Scholar 

  • Y. L. Wang, K. S. Ting, H. Leh, J. Chao, and H. Y. Hu, Sci. Technol. China 1, 33 (1948).

    Google Scholar 

  • Ch. Engel and T. Hendirks, The determination of riboflavin (vitamin B2) in vitamin concentrates for forage, Chem. Weekblad 46, 854 (1950).

    Google Scholar 

  • David and R. F. Libbey, A correction for nonlinear galvanometric response of the Pfaltz and Bauer fluorophotometer in riboflavin determination, Drug Standards 20, 239 (1952).

    Google Scholar 

  • P. Cerletti and P. Ipata, Determination of riboflavin and its coenzymes in tissues, Biochem. J. 75, 119 (1960).

    Google Scholar 

  • K. Yagi, H. Tabata, E. Kotaki, and T. Arakawa, Fluorometric analysis of vitamins. II. — Fluorescence spectra of riboflavin and similar fluorescent substances, Vitamins 8, 61 (1955).

    Google Scholar 

  • T. B. Mann, Analyst 71, 166 (1946).

    Google Scholar 

  • J. M. A. Samaiego and D. Salgado, Metodo fluorofotometrico para la valoracion de lactoflavina, Rev. Espan. Fisiol. 3, 55 (1947).

    Google Scholar 

  • G. Graziani and M. Giordano, Boll. Soc. Ital. Biol. 24, 685 (1948).

    Google Scholar 

  • J. Antener and H. Berger, Vitamin B 2-und Porphyrinausscheidung im Harn bei einem Patienten mit chronischer hereditärer Koproporphyrie, Int. Z. Vit. Forsch. 27, 233 (1957).

    Google Scholar 

  • M. Bercovici, The fluorimetric determination of vitamin B 2 in native products in the presence of other vitamins, Rev. Chim. Bucharest 9, 335 (1958).

    Google Scholar 

  • K. Sakai, Fluorescence of riboflavin, Naoya J. Med. Sci. 18, 245 (1956).

    Google Scholar 

  • O. Hrdy, Determination of vitamin B 2 in presence of fluorimetrically active accompanying materials, Casopis Ceskeho Lekarnictva 63, 115 (1950).

    Google Scholar 

  • D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • P. Cerletti, Properties of riboflavin phosphates, Anal. Chim. Acta 20, 243 (1959).

    Google Scholar 

  • K. Yagi, Microdetermination of riboflavin, flavin mononucleotide (FMN) and flavin adenine (FAD) by filter paper, J. Biochem. Japan 38, 161 (1951).

    Google Scholar 

  • H. Burch, O. Bessey, and H. O. Lowry, Fluorimetric measurements of riboflavin and its natural derivatives in small quantities of blood serum and cells, J. Biol. Chem. 175, 457 (1948).

    Google Scholar 

  • O. A. Bessey, O. H. Lowry, and R. H. Lowe, The fluorimetric measurements of nucleotides of riboflavin and their concentration in tissues, J. Biol. Chem. 180, 755 (1949).

    Google Scholar 

  • G. Weber, Fluorescence of riboflavin and flavin adenine dinucleotide, Biochem. J. 47, 114 (1950).

    Google Scholar 

  • A. P. Jansen, Microbiological vitamin determination and the chemical determination of lactoflavin, Chem. Weekblad 46, 717 (1950).

    Google Scholar 

  • A. P. Jansen, Determination of riboflavin according to the lumiflavin method, Rec. Trav. Chim. Pays-Bas 69, 1275 (1950).

    Google Scholar 

  • K. Matsuura, Kitasato Arch. Exptl. Med. 22, 293 (1949).

    Google Scholar 

  • K. Yagi and S. Mitsuhashi, Simplified lumiflavin method for the microdetermination of flavin in bacteria, Japan. J. Exptl. Med. 21, 353 (1951).

    Google Scholar 

  • A. Fujita and K. Matsuura, Determination of free and esterified riboflavin with the lumiflavin method, J. Biochem. Japan 37, 445 (1950).

    Google Scholar 

  • H. Roth, Weiterentwicklung der Lumiflavin-Methode zur fluorimetrischen Bestimmung des Vitamins B 2 in Pflanzen, Biochem. J. 320, 355 (1950).

    Google Scholar 

  • K. Yagi, Simplified lumiflavin method for the microdetermination of flavin compounds in animal tissues, J. Biochem. Japan 43, 635 (1956).

    Google Scholar 

  • I. Tschiguro, Riboflavin-like fluorescent Substances in human urine, J. Vitaminology 2, 264 (1956).

    Google Scholar 

  • L. Rosner, E. Lerner, and H. J. Canon, Use of enzyme in riboflavin determination. Free and combined riboflavin, Ind. Eng. Chem. Anal. Ed. 17, 778 (1945).

    Google Scholar 

  • E. C. Slater and D. B. Morell, A modification of the fluorimetric method of determining riboflavin in biological materials, Biochem. J. 40, 644 (1956).

    Google Scholar 

  • E. Kodicek and Y. L. Wang, The fluorimetric estimation of riboflavin in foodstuffs and other biological material, Biochem. J. 44, 340 (1949).

    Google Scholar 

  • C. Klatzkin, F. W. Norris, and F. Workes, Fluorimetric and microbiological assays of riboflavin in malted preparations, J. Pharm. Pharmacol. 1, 915 (1949).

    Google Scholar 

  • M. Takada, Determination of riboflavin in blood, Eiyó to Shokuryó 2, 181 (1950) (J. Japan. Food Nutrition).

    Google Scholar 

  • S. Kozuka and Y. Nose, Vitamin assays. XXXIII. — Estimation of riboflavin in the urine with the lumiflavin method, Igaku to Seibutsugaku (Med. and Biol.) 16, 56 (1950).

    Google Scholar 

  • T. Wada and Y. Sakurai, The reason potassium permanganate treatment lowers the values determined in the lumiflavin method, Repts. Sci. Res. Inst. (Japan) 26, 25 (1950).

    Google Scholar 

  • K. Yagi, Lumiflavin method, Igaku to Seibutsugaku (Med. and Biol.) 18, 264 (1951).

    Google Scholar 

  • B. D. Morell and E. C. Slater, The fluorimetric determination of riboflavin in urine, Biochem. J. 40, 652 (1946).

    Google Scholar 

  • W. F. Hinman, R. E. Tucker, L. M. Jans, and G. E. Halliday, Excessively high riboflavin retention during braising of beef. — A comparison of methods of assay. Ind. Eng. Chem. Anal. Ed. 18, 296 (1946).

    Google Scholar 

  • E. De Ritter, M. E. Moore, E. Hirschberg, and S. H. Rubin, Critique of methods for the determination of riboflavin in urine, J. Biol. Chem. 175, 883 (1948).

    Google Scholar 

  • L. Hemmrich, B. Prijs, and H. Erlenmeyer, Synthesen in der Lumiflavinreihe. — IV. Helv. 42, 1604 (1959).

    Google Scholar 

  • A. Borota, B. Bugyi (nach Pringsheim-Vogel: Luminescenz von Flüssigkeiten und festen Körpern), Z. Vitaminforsch. 17, 310 (1946).

    Google Scholar 

  • D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • D. B. Coursin and V. C. Brown, Measurement of compounds of vitamin B 6 groups, Proc. Soc. Exp. Biol. Med. 98, 315 (1958).

    Google Scholar 

  • P. Moller, The fluorimetric measurements of 4-pyridoxic acid in normal urine, Acta Chem. Scand. 5, 1418 (1951).

    Google Scholar 

  • A. Fujita, K. Matsuura, and K. Fujino, Fluorometric determination of vitamin B 6, Vitaminology 1, 267 (1955).

    Google Scholar 

  • (a) Determination of Pyridoxin, ibid., 276.

    Google Scholar 

  • (b) Determination of Pyridoxamin, ibid., 275.

    Google Scholar 

  • III. Fractional determination of pyridoxal and 4-pyridoxic acid, ibid., 279.

    Google Scholar 

  • F. Kavanagh and R. H. Goodwin, The relationship between pH and fluorescence of several organic compounds, Arch. Biochem. 20, 315 (1949).

    Google Scholar 

  • H. Wolf, Vitamin B 6. — I. Zur Bestimmung von 4-Pyridoxinsäure im Harn, Zeiss-Mitteilungen 1, 73 (1957).

    Google Scholar 

  • S. K. Reddy, M. S. Reynolds, and J. M. Price, The determination of 4-pyridoxic acid in human urine. J. Biol. Chem. 233, 691 (1958).

    Google Scholar 

  • V. Bonavita and V. Scardi, Studies on glutamic oxalacetic transaminase. — II. The properties of two derivatives of pyridoxal-5-phosphate, Arch. Biochem. Biophys. 82, 300 (1959).

    Google Scholar 

  • V. Bonavita, The reaction of Pyridoxal-5-phosphate with cyanide and its analytical use, Arch. Biochem. Biophys. 88, 366 (1960).

    Google Scholar 

  • D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • G. E. Boxer and J. C. Richards, Chemical determination of vitamin B 12. — I. Determination of 5,6-dimethylbenzimidazol by chlorimetric and fluorometric methods, Arch. Biochem. 29, 75 (1950).

    Google Scholar 

  • H. Freytag, Neuer lumineszenzanalytischer Nachweis von A scorbinsäure und einigen Mercaptoverbindungen, Z. Anal. Chem. 139, 263 (1953).

    Google Scholar 

  • K. Leupin and I. Steiner, Hundert Jahre Schweiz. Apotheker-Ver. 1843–1943, 481 (1943).

    Google Scholar 

  • S. Ogawa, Fluorescent reaction of vitamin C, J. Pharm. Soc. Japan 73, 309 (1953).

    Google Scholar 

  • S. Ogawa, Fluorescent reaction of vitamin C, J. Pharm. Soc. Japan 73, 54; 94 (1953).

    Google Scholar 

  • V. Sicho and E. Bradacova, Ceskoslov. Farm. 4, 451 (1955).

    Google Scholar 

  • D. E. Dugan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • B. Bencze, Vitamin E (tocopherol) analysis in natural vitamin E containing substances, Magyar Kern. Folyoirat 60, 257 (1954).

    Google Scholar 

  • M. Kofler, Die getrennte Bestimmung der Tocopherole, Helv. 30, 1053 (1947).

    Google Scholar 

  • J. V. Scudi, On the fluorimetric determination of nicotinamide, Science 103, 567 (1946).

    Google Scholar 

  • P. Ellinger, Nicotinamide methochloride and its fluorescent derivatives, Nature 155, 319 (1945).

    Google Scholar 

  • M. Kato and H. Shimizu, Fluorometric determination of nicotinamide by use of synthetic ion exchange resins, Science 114, 12 (1951).

    Google Scholar 

  • R. Banierjee and S. Banierjee, A simple fluorometric method of estimation of nicotinamide in biological materials, Indian. J. Phisiol. 4, 16 (1950).

    Google Scholar 

  • D. K. Chaudhuri and E. Kodicek, The fluorimetric estimation of nicotinamide in biological materials, Biochem. J. 44, 343 (1949).

    Google Scholar 

  • B. C. Johnson and P. H. Lin, Nicotinic acid metabolism. — I. The use of paper chromatography in the study of nicotinic acid metabolism, J. Amer. Chem. Soc. 75, 2971 (1953).

    Google Scholar 

  • J. W. Huff, The fluorescent condensation product of N 1-methylnicotinamide and acetone. — I. Synthesis and properties, J. Biol. Chem. 167, 151 (1947).

    Google Scholar 

  • J. W. Huff and W. A. Perlzweig, — II. A sensitive method for the determination of N 1-methylnicotinamide in urine, J. Biol. Chem. 167, 157 (1947).

    Google Scholar 

  • N. Levitas, J. Robinson, F. Rosen, J. W. Huff, and W. A. Perlzweig, The fluorescent condensation product of N 1-methylnicotinamide and acetone. — III. A rapid fluorometric method for the determination of the total pyridine nucleotides in the red blood cells, J. Biol. Chem. 167, 169 (1947).

    Google Scholar 

  • F. Rosen, W. A. Perlzweig, and I. G. Leder, A fluorimetric method for the determination of the 6-pyridone of N 1-methylnicotinamide in urine, J. Biol. Chem. 179, 157 (1949).

    Google Scholar 

  • K. J. Carpentier and E. Kodicek, The fluorimetric estimation of N 1-methylnicotinamide and its differentiation from coenzyme I, Biochem. J. 46, 421 (1950).

    Google Scholar 

  • M. Kato, H. Shimizu, and Y. Hamamura, Fluorimetric determination of N 1-methylnicotinamide, Science 116, 462 (1952).

    Google Scholar 

  • H. L. Rosenthal, On the fluorimetric determination of N 1-methylnicotinamide, Science 120, 231 (1954).

    Google Scholar 

  • T. Asami, A simple method for the determination of N 1-methyl-nicotinamide in urine, J. Vitaminology Japan 3, 189 (1957).

    Google Scholar 

  • B. Gassmann and A. Scheunert, Über die Bestimmung von N 1-methylnicotinamid im Harn, Pharmazie 13, 515 (1958).

    Google Scholar 

  • T. Momose, Y. Mukai, and K. Watanabe, Micro fluorometric estimation of isonicotinic acid hydrazide, J. Pharm. Soc. Japan 80, 225 (1960).

    Google Scholar 

  • J. H. Peters, Studies on the metabolism of isoniazid. — I. Development and application of a fluorimetric procedure for measuring isoniazid in blood plasma, Amer. Rev. Resp. Diseases 81, 485 (1960).

    Google Scholar 

  • G. G. Villea, O. Hospital (Rio de Janeiro) 30, 755 (1946).

    Google Scholar 

  • B. De Lerma, A. Colarusso, and P. Boni, Boll. Soc. Ital. Biol. Sper. 24, 1198 (1948).

    Google Scholar 

  • V. Allfrey, L. J. Teply, C. Geffen, and C. G. King, A fluorimetric method for the determination of pteroyl-glutamic acid, J. Biol. Chem. 178, 465 (1949).

    Google Scholar 

  • N. A. Andreeva and V. N. Bukin, Fluorometrische Methode zur Bestimmung der Folsäure, Doklady Akad. Nauk. SSSR. 64, 95 (1949).

    Google Scholar 

  • L. J. Harris, L. Mapson, E. Kodicek, T. Moore, and V. H. Booth, Proc. Intern. Congr. Pure and Appl. Chem. 11th Congr. London, Vol. III, 503 (1947).

    Google Scholar 

  • E. Kodicek, Analyst 72, 385 (1947).

    Google Scholar 

  • P. Gyorgy, Vitamin methods I and II, Academic Press 1950 (I), 1951 (II) New York.

    Google Scholar 

  • F. Gstirner, Chemisch-physikalische Bestimmungsmethoden, F. Enke Verlag, Stuttgart, Germany 1951.

    Google Scholar 

General

  • J. A. Radley, Some new fluorescence reactions, Analyst 69, 15 (1944).

    Google Scholar 

  • B. Camber, Salicyloylhydrazide as a reagent for the characterisation and estimation of simple and steroidal aldehydes and ketones, Clin. Chim. Acta 2, 188 (1957).

    Google Scholar 

  • R. A. Braun and W. A. Mosher, 2-Diphenylacetyl-1,3-indandione-1-hydrazone. — A new reagent for carbonyl compounds, J. Amer. Chem. Soc. 80, 3048 (1958).

    Google Scholar 

  • W. H. Wadman, G. J. Thomas, and A. B. Pardee, Quantitative method using paper chromatography for estimation of reducing oligosaccharides, Anal. Chem. 26, 1192 (1954).

    Google Scholar 

  • D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • W. Seaman, A. R. Norton, and O. E. Sundberg, Estimation of o-nitrophenol in p-nitrophenol and o-aminophenol in p-aminophenol by fluorescence analysis. Ind. Eng. Chem., Anal. Ed. 12, 403 (1940).

    Google Scholar 

  • B. V. Christensen and I. A. Abdel-Latif, Colorimetric and fluorometric studies on the Borntraeger reaction for anthraquinone drugs, J. Amer. Pharm. Assoc. 38, 487 (1949).

    Google Scholar 

  • B. V. Christensen and I. A. Abdel-Latif, A new fluorometric method of assay for Alexandria Senna leaves [Cassia Acutifolia Delila], J. Amer. Pharm. Assoc. 38, 652 (1949).

    Google Scholar 

  • C. G. Barr, Investigations on the fluorometric determination of malic and succinic acids in apple tissue, Plant Physiol. 23, 443 (1948).

    Google Scholar 

  • E. Leininger and S. Katz, Fluorometric determination of malic acid and 2-naphthol, Anal. Chem. 21, 1375 (1949).

    Google Scholar 

  • J. P. Hummel, The fluorometric determination of malic acid, J. Biol. Chem. 80, 1225 (1949).

    Google Scholar 

  • S. J. Hopkins, Evaluation of crude drugs. — IV. Fluorescence analysis, Mfg. Chemist 15, 217 (1944).

    Google Scholar 

  • C. J. Kokoski, R. J. Kokoski, and F. J. Slama, Fluorescence of powdered vegetable drugs under ultra violet radiation, J. Amer. Pharm. Assoc. Sci. Ed. 47, 715 (1958).

    Google Scholar 

  • G. Drefahl, G. Plötner, W. Hartrodt, and R. Kühmstedt, Untersuchungen über Stilbene. — XXXVIII. 1,4-Diaryl-butadiene und 1,1-Diphenyl-4-aryl-butadiene, Chem. Ber. 93, 1799 (1960).

    Google Scholar 

  • P. Relyveld, Identificatie van barbitalen middel van papier-chromatografie, Pharm. Weekblad 1957, 621.

    Google Scholar 

  • R. J. Keirs, R. D. Britt, and W. E. Went-Worth, Phosphometry. — A new method of analysis, Anal. Chem. 29, 202 (1957).

    Google Scholar 

  • S. K. K. Jatkar, and B. B. Mattoo, Absorption and fluorescence spectra of benzylidene coumarons, J. Indian. Chem. Soc. 33, 647 (1956).

    Google Scholar 

  • Ch. E. White, A. Weissler, and D. Buskey: Fluorometric determination of microgram quantities of boron, Anal. Chem. 19, 802 (1947).

    Google Scholar 

  • Ch. E. White and D. E. Hoffmann, Characteristics of boronbenzoin complex, Anal. Chem. 29, 1105 (1957).

    Google Scholar 

  • C. A. Parker and W. J. Barnes, Some experiments with spectrofluorimeters and filter fluorimeters, Analyst 82, 607 (1957).

    Google Scholar 

  • L. Sommer, Nachweis und fluorometrische Bestimmung der Borsäure, Coll. Czech. Chem. Comm. 24, 99 (1959).

    Google Scholar 

  • J. A. Radley, Two new tests for boron, Analyst 69, 47 (1944).

    Google Scholar 

  • K. Neelakantam et al., Fluorescence reactions with H 3BO3 and o-hydroxycarbonyl compounds and their application in analytical chemistry, Proc. Indian Acad. Sci. 15A, 81 (1942).

    Google Scholar 

  • K. Neelakantam et al., Fluorescence reactions with H 3BO3 and o-hydroxycarbonyl compounds and their application in analytical chemistry, Proc. Indian Acad. Sci. 18A, 364 (1943).

    Google Scholar 

  • K. Neelakantam et al., Fluorescence reactions with H 3BO3 and o-hydroxycarbonyl compounds and their application in analytical chemistry, Proc. Indian Acad. Sci. 19A, 40 (1944).

    Google Scholar 

  • K. Neelakantam et al., Fluorescence reactions with H 3BO3 and o-hydroxycarbonyl compounds and their application in analytical chemistry, Proc. Indian Acad. Sci. 23A, 16 (1946).

    Google Scholar 

  • L. Kogan, F. I. Di Carlo, and W. E. Maynard, Determination of caffeine and trigonelline in coffee by paper chromatography, Anal. Chem. 25, 1118 (1953).

    Google Scholar 

  • J. Koerbl and F. Vydra, Metallochromic indicators. — IV. A note on the preparation and properties of calcein, Coll. Czech. Chem. Comm. 23, 622 (1958).

    Google Scholar 

  • J. A. Radley, Some new fluorescence reactions, Analyst 69, 15 (1954).

    Google Scholar 

  • L. N. Mulay and R. M. Mathur, Fluorescence test as applied to carboxylic acids, Current Sci. India 20, 206 (1951).

    Google Scholar 

  • M. Pesez and J. Ferrero, Test de fluorescence dans la Chromatographie sur papier des acids aliphatiques, Bull. Soc. Chim. Biol. 39, 221 (1957).

    Google Scholar 

  • J. G. Kirchner, A. N. Prater, and A. J. Haagen-Smit, Separation of acids by Chromatographic adsorption of their p-phenyl-phenacyl-esters, Ind. Eng. Chem. 18, 31 (1946).

    Google Scholar 

  • R. A. Braun and W. A. Mosher, 2-Diphenyl-acetyl-1,3-indandion-i-hydrazone. — A new reagent for carbonyl compounds, J. Amer. Chem. Soc. 80, 3048 (1958).

    Google Scholar 

  • R. Neu, Ein Nachweis für Chinasäure, Naturwissenschaften 45, 286 (1958).

    Google Scholar 

  • E. Leininger and S. Katz, Fluorometric method for determination of citric acid, Anal. Chem. 21, 810 (1949).

    Google Scholar 

  • M. J. Goodjear and N. R. Jenkinson, Irradiation fluorometric method for the estimation of diethylstilbestrol in beef liver tissue, Anal. Chem. 33, 853 (1961).

    Google Scholar 

  • D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • D. G. Ott, V. N. Kerr, F. N. Hayes, and E. Hansbury, Liquid scintillators. — XII. Absorption and fluorescence spectra of 2,5-diaryl-1,3,4-oxadiazoles, J. Org. Chem. 25, 872 (1960).

    Google Scholar 

  • M. A. Darken, Applications of fluorescent brighteners in biological techniques, Science 133, 1704 (1961).

    Google Scholar 

  • J. I. Graham-Bryce and J. M. Corkill, Use of solvents containing ethyl iodide in the investigation of phosphorescence spectra of organic compounds, Nature 186, 965 (1960).

    Google Scholar 

  • M. D. Barnett, H. G. Daub, F. N. Hayes, and D. G. Ott, Liquid scintillators. — XI. 2-(2-fluorenyl)-5-aryl substituted oxazoles and 2-(2-fluorenyl)-5-phenyl-1,3,4-oxadiazole, J. Amer. Chem. Soc. 82, 2282 (1960).

    Google Scholar 

  • J. A. Radley, Some new fluorescence reactions, Analyst 69, 15 (1944).

    Google Scholar 

  • R. P. Haycock, P. B. Shet, and W. J. Mader, A quantitative fluorometric reaction for glutethimide, J. Amer. Pharm. Assoc. 49, 673 (1960).

    Google Scholar 

  • J. Eisenbrand and M. Raisch, Beiträge zur Fluorimetrie. Die fluorimetrische Bestimmung des Glycerins nach Überführung in Chinolin unter Verwendung von kurzwelligem U V-Licht (313mμ), Z. Anal. Chem. 177, 1 (1960).

    Google Scholar 

  • J. A. Radley, Some new fluorescence reactions, Analyst 69, 15 (1944).

    Google Scholar 

  • D. Mendelsohn and A. Antonis, A fluorimetric micro glycerol method and its application to the determination of serum triglycerides, J. Lipid Research 2, 45 (1961).

    Google Scholar 

  • J. A. Radley, Some new fluorescence reactions, Food Manuf. 21, 142 (1946).

    Google Scholar 

  • K. Fürst, Ein mikroanalytischer Nachweis des Glycerins mit 2,7-Dioxynaphthalin, Mikrochemie 34, 25 (1949).

    Google Scholar 

  • J. A. Radley, Anthrone as a reagent in fluorescence analysis and some applications, J. Sci. Food Agr. 1, 222 (1950).

    Google Scholar 

  • J. W. Noah and A. Brand, A fluorometric method to determine levels of histamine in human plasma, J. Allergy 32, 236 (1961).

    Google Scholar 

  • P. A. Shore, A. Burkhalter, and V. H. Cohn, A method for the fluorometric assay of histamine in tissues, J. Pharmacol. Exp. Ther. 127, 182 (1959).

    Google Scholar 

  • D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • F. Feigl and W. A. Maunheimer, Notizen zum Nachweis von Hydrazin in der Tüpfel-Analyse, Mikrochemie 40, 50 (1953).

    Google Scholar 

  • F. Feigl, II.-Notiz zum Nachweis von Hydrazin in der Tüpfel-Analyse, Mikrochemie 40, 355 (1953).

    Google Scholar 

  • L. M. Kul’berg and T. S. Jilina, New fluorescent reacting for detection of hydrazine, Ukrain. Khim. Zhur. 21, 97 (1955).

    Google Scholar 

  • K.-H. Koenig and H. Berg, Der Nachweis von sek. β-Hydroxyaethylaminen durch Fluoreszenz, Polarographie, Papierchromatographie und Thermochromie, Z. für analytische Chemie 166, 92 (1959).

    Google Scholar 

  • A. H. Bookman and B. S. Schweigert, 3-Hydroxy anthranilic acid metabolism. — III. Molar conversion to quinolinic acid, J. Biol. Chem. 186, 153 (1950).

    Google Scholar 

  • D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • D. Abelson, Ultra violet photography of fluorescent spots on chromatograms of biological extracts, Nature 188, 850 (1960).

    Google Scholar 

  • G. A. Thommes and E. Leininger, Fluorimetric determination of o-hydroxy-and m-hydroxy-benzoic acid in mixture, Anal. Chem. 30, 1361 (1958).

    Google Scholar 

  • D. E. Dugan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophotofluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1 (1957).

    Google Scholar 

  • V. Harlay, Fluorescéines iodées. — Application au microdosage fluorométrique de l’iode, Ann. Pharm. France 5, 81 (1947).

    Google Scholar 

  • R. Rabson and N. E. Tolbert, Detection of α-ketoglutaric acid and other keto acids on paper chromatograms with ninhydrin, Nature 181, 50 (1958).

    Google Scholar 

  • E. S. Rorem, Ultraviolet fluorescence of sulfosalicylic acid for the detection and differentiation of ketoses and aldoses, Anal. Biochem. 1, 218 (1960).

    Google Scholar 

  • E. Ponder and R. Ponder, Fluorescence and haemolitic activity of tumours and normal tissues of the C3H mouse, Nature 189, 643 (1961).

    Google Scholar 

  • H. Ippen, Strahlenumwandlung durch Lichtschutzpräparate, Arzneimittelforschung 10, 601 (1960).

    Google Scholar 

  • E. J. Norberg, I. Auerbach, and R. M. Nixon, Fluorescence spectrography of the methyl glucoses, J. Amer. Chem. Soc. 67, 342 (1945).

    Google Scholar 

  • B. J. Thornton and J. C. Speck, Fluorimetric determination of pyruvaldehyde, Anal. Chem. 22, 899 (1950).

    Google Scholar 

  • J. P. Pickett, C. M. Bishop, E. W. Chick, and R. D. Baker, A simple fluorescent stain for fungi. Selective staining of fungi by means of a fluorescent method for mucin, J. Amer. Clin. Pathol. 34, 197 (1960).

    Google Scholar 

  • G. Weber and D. J. R. Laurence, Fluorescent indicators of adsorption in aqueous solution and on the solid phase, Biochem. J. 56, XXXI (1954).

    Google Scholar 

  • J. E. Fildes, D. J. R. Laurence, and V. H. Rees, The dye-binding capacity of human plasma determined fluorimetrically and its relation to the determination of plasma albumin, Biochem. J. 56, XXXI (1954).

    Google Scholar 

  • E. Sawicki and W. C. Elbert, New specific analytical procedure for the detection and characterisation of 1,4-naphthoquinones, Anal. Chim. Acta 23, 205 (1960).

    Google Scholar 

  • D. M. Hercules and L. B. Rogers, Absorption and fluorescence spectra of some mono-and dihydroxy naphthalenes, Spectrochimica Acta 1959, 393.

    Google Scholar 

  • R. J. Boscott, New colour fluorescence reactions in the steroid and synthetic estrogen series, Nature 162, 577 (1948).

    Google Scholar 

  • E. Leininger and S. Katz, Fluorometric determination of malic acid and 2-naphthol, Anal. Chem. 21, 1375 (1949).

    Google Scholar 

  • D. M. Hercules and L. B. Rogers, Fluorimetric determination of 1-and 2-naphthol in mixtures, Anal. Chem. 30, 96 (1958).

    Google Scholar 

  • F. Cuta and J. Borecky, Fluorometrische Bestimmung von β-Naphthylaminosulfosäuren, Coll. Czech. Chem. Comm. 22, 739 (1957).

    Google Scholar 

  • W. Seamann, A. R. Norton, and O. E. Sundberg, Estimation of o-nitrophenol in p-nitrophenol and o-aminophenol in p-aminophenol by fluorescence analysis, Ind. Eng. Chem. Anal. Ed. 12, 403 (1940).

    Google Scholar 

  • F. L. English and J. W. Eppert, Fluorometric determination of 2-nitro-naphthalene, Anal. Chem. 23, 717 (1951).

    Google Scholar 

  • F. Feigl and V. Gentil, Spot reaction for acidic polynitro compounds, Anal. Chem. 27, 432 (1955).

    Google Scholar 

  • K.-H. König and H. Berg, Der Nachweis von sekundären β-Oxyaethylaminen durch Fluoreszenz, Polarographie, Papier Chromatographie und Thermochromie, Z. Anal. Chemie 166, 92 (1959).

    Google Scholar 

  • G. Giacometti, H. Okabe, S. J. Price and W. E. R. Steacie, The photolysis and the fluorescence of perfluoro diethyl ketone, Canad. J. Chem. 38, 104 (1960).

    Google Scholar 

  • G. Rindi and V. Perri, Uptake of pyrithiamine by tissue of rats, Biochem. J. 80, 214 (1961).

    Google Scholar 

  • D. N. Vaskevich, Determination of phthalic esters by a luminescence method, Zhur. Anal. Khim. 5, 354 (1960).

    Google Scholar 

  • C. E. Frohmann and J. M. Orten, The fluorometric determination of polycarboxylic acids following chromatography, J. Biol. Chem. 205, 717 (1953).

    Google Scholar 

  • Z. Holzbrecher, Fluoreszenz von Metallchelaten des Resorcylaldehydes und seiner Derivate, Coll. Czech. Chem. Comm. 25, 977 (1960).

    Google Scholar 

  • L. Sattler, New spray reagents for paper chromatography of reducing sugars, Anal. Chem. 24, 1862 (1952).

    Google Scholar 

  • Z. Holzbrecher, Fluorescence spectra of salicylaldehyde condensation products and their salts. — II. o-Salicylideneaminophenol. — III. Acetylhydrazone, semicarbazone and thiosemicarbazone of salicylaldehyde, Chem. Listy 49, 1030, 1162 (1955).

    Google Scholar 

  • P. S. Chen, Fluorescence of some salicyloyl hydrazones, Anal. Chem. 31, 296 (1959).

    Google Scholar 

  • D. Schachter and J. G. Manis, Salicylate and salicyl conjugates: fluorimetric estimation, biosynthesis and renal excretion in man, J. Clin. Invest. 37, 800 (1958).

    Google Scholar 

  • T. L. Parkinson, Use of paper chromatography for detection of benzoic acid and its derivatives in food products, Analyst 77, 438 (1952).

    Google Scholar 

  • A. Saltzman, Fluorophotometric method for the estimation of salicylate in blood, J. Biol. Chem. 174, 399 (1948).

    Google Scholar 

  • E. Krokowski, Zur Frage der Fluoreszenzausbeute von Natriumsalicylat im UV-und Röntgengebiet, Naturwissenschaften 45, 509 (1958).

    Google Scholar 

  • R. S. Gordon, E. D. Pierron, and R. E. Keller, Determination of santoquin in feeds, J. Assoc. Offic. Agr. Chemists 44, 560 (1961).

    Google Scholar 

  • P. Schwarze, Über den Bitterstoff der Rapssamen, Naturwissenschaften 36, 88 (1949).

    Google Scholar 

  • V. G. Mikhailov, A very simple fluorescent method of determining acrichine (mephacrine) and stilbamidine in urine, Lab. Delo (4), 15 (1957).

    Google Scholar 

  • H. W. Raybin, Identification of sulfapyrazine through ultra violet fluorescence of 2-amino-pyrazine, J. Amer. Pharm. Assoc. 34, 196 (1945).

    Google Scholar 

  • R. H. Wiley et al., 1,3,5-Triaryl-2-pyrazolines for use as scintillation solutes, J. Org. Chem. 23, 732 (1958).

    Google Scholar 

  • R. Metze, Über 1,2,4-Triazine. — VIII. Über eine neue Synthese und Fluoreszenz von 1,2,4-Triazinen, Chem. Ber. 91, 1863 (1958).

    Google Scholar 

  • J. Dobas, J. Pirkl, and V. Hanousek, Fluoreszierende Derivate des 1,2,3-Triazols, Coll. Czech. Chem. Comm. 23, 1346 (1958).

    Google Scholar 

  • J. Dobas and J. Pirkl, Fluoreszierende Derivate des 1,2,3-Triazols. — VIII. Einige Derivate des 2-Phenylnaphtho-(1,2)-triazols, Coll. Czech. Chem. Comm. 25, 912 (1960).

    Google Scholar 

  • H. Freytag, Lumineszenzanalytischer Nachweis der Tylose und Alginsäure, Anal. Chem. 133, 429 (1951).

    Google Scholar 

  • W. Neuman, R. W. Fleming, A. B. Carlson, and N. Glover, The fluorophotometric determination of uranium in biological material, J. Biol. Chem. 173, 41 (1958).

    Google Scholar 

  • J. A. Radley, Some new fluorescence reactions, Analyst 69, 15 (1944).

    Google Scholar 

  • H. Perschke and E. Broda, Determination of very small amounts of hydrogen peroxide, Nature 190, 257 (1961).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Leemann, H.G., Stich, K., Thomas, M. (1963). Physico Chemical Methods in Pharmaceutical Chemistry I. Spectrofluorometry. In: Jucker, E. (eds) Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des recherches pharmaceutiques. Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des Recherches Pharmaceutiques, vol 6. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7050-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7050-4_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7052-8

  • Online ISBN: 978-3-0348-7050-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics