Skip to main content

Algebraic Curves Over Finite Fields with many Rational Points and their Applications

  • Chapter

Part of the book series: Trends in Mathematics ((TM))

Abstract

Algebraic curves over finite fields with many rational points have received a lot of attention in recent years. We present a survey of this subject covering both the case of fixed genus and the asymptotic theory. A strong impetus in the asymptotic theory has come from a thorough exploitation of the method of infinite class field towers. On the other hand, we show by a counterexample that Perret’s conjecture on infinite class field towers is wrong, and so Perret’s method of infinite ramified class field towers breaks down. In the last two sections of the paper we discuss applications of algebraic curves over finite fields with many rational points to coding theory and to the construction of low-discrepancy sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272.

    Article  MathSciNet  Google Scholar 

  2. R. Fuhrmann and Tones, F., The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103–106.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.R. Hayes, A brief introduction to Drinfeld modules, The Arithmetic of Function Fields (D. Goss, D.R. Hayes and M.I. Rosen, eds.), pp. 1–32, W. de Gruyter, Berlin, 1992.

    Google Scholar 

  4. Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721–724.

    MathSciNet  MATH  Google Scholar 

  5. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.

    Google Scholar 

  6. H. Niederreiter and Xing, C.P., Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383–396.

    MathSciNet  MATH  Google Scholar 

  7. H. Niederreiter and Xing, C.P., Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59–76.

    MathSciNet  MATH  Google Scholar 

  8. H. Niederreiter and Xing, C.P., Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81 (1997), 81–100.

    MathSciNet  MATH  Google Scholar 

  9. H. Niederreiter and Xing, C.P., The algebraic-geometry approach to low-discrepancy sequences, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, vol. 127, pp. 139–160, Springer, New York, 1997.

    Google Scholar 

  10. H. Niederreiter and Xing, C.P., Global function fields with many rational places over the ternary field, Acta Arith. 83 (1998), 65–86.

    MathSciNet  MATH  Google Scholar 

  11. H. Niederreiter and Xing, C.P., Algebraic curves over finite fields with many rational points, Proc. Number Theory: Diophantine, Computational and Algebraic Aspects (K. Györy et al., eds.), pp. 423–443, W. de Gruyter, Berlin, 1998.

    Google Scholar 

  12. H. Niederreiter and Xing, C.P., Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919–930.

    MathSciNet  MATH  Google Scholar 

  13. H. Niederreiter and Xing, C.P., Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound, Math. Nachr. 195 (1998), 171–186.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Niederreiter and Xing, C.P., Algebraic curves with many rational points over finite fields of characteristic 2, Number Theory in Progress (K. Györy et al., eds.), pp. 359–380, W. de Gruyter, Berlin, 1999.

    Google Scholar 

  15. H. Niederreiter anc] Xing, C.P., Global function fields with many rational places and their applications, Finite Fields: Theory, Applications, and Algorithms (R.C. Mullin and G.L. Mullen, eds.), Contemporary Math., vol. 225, pp. 87–111, American Math. Society, Providence, R.I., 1999.

    Google Scholar 

  16. H. Niederreiter and Xing, C.P., Curve sequences with asymptotically many rational points, Proc. AMS Summer Research Conf. (Seattle, 1997), to appear.

    Google Scholar 

  17. H. Niederreiter and Xing, C.P., A general method of constructing global function fields with many rational places, Algorithmic Number Theory (J.P. Buhler, ed.), Lecture Notes in Computer Science, vol. 1423, pp. 555–566, Springer, Berlin, 1998.

    Google Scholar 

  18. H. Niederreiter and Xing, C.P., Nets, (t, s)-sequences, and algebraic geometry, Random and Quasi-Random Point Sets (P. Hellekalek and G. Larcher, eds.), Lecture Notes in Statistics, vol. 138, pp. 267–302, Springer, New York, 1998.

    Google Scholar 

  19. M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300–322.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.-R. Serre, Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini, C.R. Acad. Sci. Paris Sér. 1 Math. 296 (1983), 397–402.

    MATH  Google Scholar 

  21. J.-R. Serre, Nombres de points des courbes algébriques sur Fq, Sim. Théorie des Nombres 1982–1983, Exp. 22, Université de Bordeaux 1, Talence, 1983.

    Google Scholar 

  22. J.-R. Serre, Rational Points on Curves over Finite Fields, Lecture Notes, Harvard University, 1985.

    Google Scholar 

  23. H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.

    MATH  Google Scholar 

  24. M.A. Tsfasman and Vlâdut, S.G., Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  25. M.A. Tsfasman, Vlâdut, S.G. and Zink, T., Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Math. Nachr. 109 (1982), 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. van der Geer and van der Vlugt, M., How to construct curves over finite fields with many points, Arithmetic Geometry (F. Catanese, ed.), pp. 169–189, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  27. G. van der Geer and van der Vlugt, M., Generalized Reed-Muller codes and curves with many points, preprint, 1997.

    Google Scholar 

  28. G. van der Geer and van der Vlugt, M., Constructing curves over finite fields with many points by solving linear equations, preprint, 1997.

    Google Scholar 

  29. S.G. Vlâdut and Drinfeld, V.G., Number of points of an algebraic curve, Functional Analysis Appl. 17 (1983), 53–54.

    Article  MATH  Google Scholar 

  30. W.C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. (4) 2 (1969), 521–560.

    MathSciNet  MATH  Google Scholar 

  31. C.P. Xing, Maximal function fields and function fields with many rational places over finite fields of characteristic 2, preprint, 1997.

    Google Scholar 

  32. C.P. Xing and Niederreiter, H., A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87–102.

    MathSciNet  MATH  Google Scholar 

  33. C.P. Xing and Niederreiter, H., Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C.R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651–654.

    MathSciNet  MATH  Google Scholar 

  34. C.P. Xing and Niederreiter, H., Drinfeld modules of rank 1 and algebraic curves with many rational points, Monatsh. Math. 127 (1999), 219–241.

    MathSciNet  MATH  Google Scholar 

  35. T. Zink, Degeneration of Shimura surfaces and a problem in coding theory, Fundamentals of Computation Theory (L. Budach, ed.), Lecture Notes in Computer Science, vol. 199, pp. 503–511, Springer, Berlin, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Hindustan Book Agency (India) and Indian National Science Academy

About this chapter

Cite this chapter

Niederreiter, H., Xing, C. (2000). Algebraic Curves Over Finite Fields with many Rational Points and their Applications. In: Bambah, R.P., Dumir, V.C., Hans-Gill, R.J. (eds) Number Theory. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7023-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7023-8_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7025-2

  • Online ISBN: 978-3-0348-7023-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics