Skip to main content

Gene Therapy for Severe Combined Immunodeficiencies

  • Chapter
Gene Therapy
  • 235 Accesses

Abstract

Severe combined immunodeficiency diseases (SCIDs) are a group of primary immunodeficiencies characterized by profoundly impaired cell-mediated and humoral responses [1, 2]. Affected children typically fail to thrive and become ill with recurrent infections caused by bacteria, viruses, and opportunistic pathogens. The molecular defects have now been identified for the majority of SCID phenotypes and are summarized in Table 1-1 [3–27]. The defects affect lymphocyte receptors [28], signal transduction molecules [29], transcription factors [30], and enzymes of purine metabolism such as adenosine deaminase (ADA) [31] and purine nucleoside phosphorilase (PNP) [32]. The identification, cloning, and expression of the genes responsible for the different forms of SCID renders them potentially curable with somatic cell gene therapy. The ideal approach to gene therapy would require efficient gene transfer into the stem cell of the hematopoietic system, thus allowing the appropriate expression of the normal gene into the affected cells of hematopoietic or lymphoid lineage [33–35]. However, initial difficulties in obtaining efficient transduction of stem cells have led several investigators to approach gene transfer directly into differentiated lymphocytes [36–38]. Gene transfer into cells of the lymphohematopoietic system for SCID is currently based on the use of retroviral vectors [33]. ADA-deficiency was the first genetic disorder to be treated with retroviral-mediated gene transfer and, to date, the only SCID treated. Here, we will review the most recent advances in gene therapy of different SCIDs, with particular regard to ADA-deficient SCID (ADA SCID), the prototype of immunodeficiencies amenable to gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper, M., Butler J. (1989) Primary immunodeficiency diseases. In: W. E. Paul (ed.), Fundamental Immunology. Raven Press, New York, pp. 1034.

    Google Scholar 

  2. Rosen, F. S., Wedgwood, R., Eibl, M. et al. (1992) Primary immunodeficiency diseases. Report of a WHO scientific group. Immunodef. Rev 3: 195–215.

    Google Scholar 

  3. Noguchi, M., Yi, H., Rosenblatt HM et al. (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73: 147–57.

    Article  PubMed  CAS  Google Scholar 

  4. Puck, J. M., Deschenes, S. M., Porter, J. C. et al. (1993) The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum. Mol. Genet. 2: 1099–104.

    Article  PubMed  CAS  Google Scholar 

  5. Russell, S., Tayebi, N., Nakajima, H. et al. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270: 797–800.

    Article  PubMed  CAS  Google Scholar 

  6. Macchi, P., Villa, A., Giliani, S. et al. (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immunodeficiency. Nature 377: 65–68.

    Article  PubMed  CAS  Google Scholar 

  7. Wiginton, D. A., Adrian, G. S., Friedman, R. L. et al. (1983) Cloning of cDNA sequences of human adenosine deaminase. Proc. Natl. Acad. Sci. USA 80: 7481–7485.

    Article  PubMed  CAS  Google Scholar 

  8. Valerio, D., Duyvesteyn, M. G., Meera, K. P. et al. (1983) Isolation of cDNA clones for human adenosine deaminase. Gene 25: 231–240.

    Article  PubMed  CAS  Google Scholar 

  9. Bonthron, D. T., Markham, A. E, Ginsburg, D. et al. (1985) Identification of a point mutation in the adenosine deaminase gene responsible for immunodeficiency. J. Clin. Invest. 76: 894–897.

    Article  PubMed  CAS  Google Scholar 

  10. Valerio, D., Dekker, B. M., Duyvesteyn, M. G. et al. (1986) One adenosine deaminase allele in a patient with severe combined immunodeficiency contains a point mutation abolishing enzyme activity. EMBO J. 5: 113–119.

    PubMed  CAS  Google Scholar 

  11. Akeson, A. L., Wiginton, D. A., Hutton, J. J. (1989) Normal and mutant human adenosine deaminase genes. J. Cell. Biochem. 39: 217–228.

    Article  PubMed  CAS  Google Scholar 

  12. Hirschhorn, R., Tzall, S., Ellenbogen, A. (1990) Hot spot mutations in adenosine deaminase deficiency. Proc. Natl. Acad. Sci. USA 87: 6171–6175.

    Article  PubMed  CAS  Google Scholar 

  13. Akeson, A. L., Wiginton, D. A., States, J. C. et al. (1987) Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing. Proc. Natl. Acad. Sci. USA 84: 5947–5951.

    Article  PubMed  CAS  Google Scholar 

  14. Markert, M. L., Hutton, J. J., Wiginton, D. A. et al. (1988) Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene promoter and first exon by homologous recombination between two Alu elements. J. Clin. Invest. 81: 1323–1327.

    Article  PubMed  CAS  Google Scholar 

  15. Hirschhorn, R., Nicknam, M. N., Eng, F. et al. (1992) Novel deletion and a new missense mutation (Glu 217 Lys) at the catalytic site in two adenosine deaminase alleles of a patient with neonatal onset adenosine deaminase-severe combined immunodeficiency. J.Immunol. 149: 3107–12.

    Google Scholar 

  16. Santisteban, I., Arredondo, V. F., Kelly, S. et al. (1995) Three new adenosine deaminase mutations that define a splicing enhancer and cause severe and partial phenotypes: implications for evolution of a CpG hotspot and expression of a transduced ADA cDNA. Hum. Mol. Genet. 4: 2081–2087.

    Article  PubMed  CAS  Google Scholar 

  17. Goddard, J. M., Caput, D., Williams, S. R. et al. (1983) Cloning of human purine-nucleoside phosphorylase cDNA sequences by complementation in Escherichia coli. Proc. Natl. Acad. Sci. USA 80: 4281–4285.

    Article  PubMed  CAS  Google Scholar 

  18. Williams, S. R., Gekeler, V., McIvor, R. S. et al. (1987) A human purine nucleoside phosphorylase deficiency caused by a single base change. J. Biol. Chem. 262: 2332–2338.

    PubMed  CAS  Google Scholar 

  19. Aust, M. R., Andrews, L. G., Barrett, M. J. et al. (1992) Molecular analysis of mutations in a patient with purine nucleoside phosphorylase deficiency. Am. J. Hum. Genet. 51: 763–772.

    CAS  Google Scholar 

  20. Arpaia, E., Shahar, M., Dadi, H. et al. (1994) Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell 76: 947–958.

    Article  PubMed  CAS  Google Scholar 

  21. Chan, A. C., Kadlecek, T. A., Elder, M. E. et al. (1994) ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264: 1599–1601.

    Article  PubMed  CAS  Google Scholar 

  22. Elder, M. E., Lin, D., Clever, J. et al. (1994) Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  23. Reith, W., Satola, S., Sanchez, C. H. et al. (1988) Congenital immunodeficiency with a regulatory defect in MHC class II gene expression lacks a specific HLA-DR promoter binding protein, RF-X. Cell 53: 897–906.

    Article  PubMed  CAS  Google Scholar 

  24. Reith, W., Barras, E., Satola, S. et al. (1989) Cloning of the major histocompatibility complex class II promoter binding protein affected in a hereditary defect in class II gene regulation. Proc. Natl. Acad. Sci. USA 86: 4200–4204.

    Article  PubMed  CAS  Google Scholar 

  25. Steimle, V., Otten, L. A., Zufferey, M. et al. (1993) Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75: 135–146.

    PubMed  CAS  Google Scholar 

  26. Steimle, V., Durand, B., Barras, E. et al. (1995) A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Gene. Dev. 9: 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  27. Douhan J3, Hauber, I., Eibl, M. M. et al. (1996) Genetic evidence for a new type of major histocompatibility complex class II combined immunodeficiency characterized by a dyscoordinate regulation of HLA-D alpha and beta chains. J. Exp. Med. 183: 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  28. Leonard, W. J. (1996) The molecular basis of X-linked severe combined immunodeficiency: defective cytokine receptor signaling. Annu. Rev. Med. 47: 229–239.

    Article  PubMed  CAS  Google Scholar 

  29. Notarangelo, L. D. (1996) Immunodeficiencies caused by genetic defects in protein kinases. Curr. Opin. Immunol. 8: 448–453.

    Article  PubMed  CAS  Google Scholar 

  30. Reith, W, Steimle, V., Mach, B. (1995) Molecular defects in the bare lymphocyte syndrome and regulation of MHC class II genes. Immunol. Today 16: 539–546.

    Article  PubMed  CAS  Google Scholar 

  31. Hirschhorn, R. (1990) Adenosine deaminase deficiency. Immunodefic. Rev. 2: 175–98.

    PubMed  CAS  Google Scholar 

  32. Markert, M. L. (1991) Purine nucleoside phosphorylase deficiency. Immunodefic. Rev. 3: 45–81.

    PubMed  CAS  Google Scholar 

  33. Anderson, E (1992) Human gene therapy. Science 256: 808–813.

    Article  PubMed  CAS  Google Scholar 

  34. Bordignon, C., Mavilio, E, Ferrari, G. et al. (1993) Transfer of the ADA gene into bone marrow cells and peripheral blood lymphocytes for the treatment of patients affected by ADA-deficient SCID. Hum. Gene Ther. 4: 513–20.

    Article  PubMed  CAS  Google Scholar 

  35. Crystal, R. (1995) Transfer of genes to humans: early lessons and obstacle to success. Science 270: 404–410.

    Article  PubMed  CAS  Google Scholar 

  36. Kantoff, P. W., Kohn, D. B., Mitsuya, H. et al. (1986) Correction of adenosine deaminase deficiency in cultured human T and B cells by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 83: 6563–6567.

    Article  CAS  Google Scholar 

  37. Blease, M., Anderson, F., Culver, K. et al. (1990) The ADA human gene therapy clinical protocol. Hum. Gene Ther. 1: 327–62.

    Article  Google Scholar 

  38. Ferrari, G., Rossini, S., Giavazzi, R. et al. (1991) An in vivo model of somatic cell gene therapy for human severe combined immunodeficiency. Science 251: 1363–6.

    Article  PubMed  CAS  Google Scholar 

  39. Danos, O., Mulligan, R. (1988) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6: 2895–2902.

    Google Scholar 

  40. Markowitz, D., Goff, S., Bank, A. (1988) A safe packaging line for gene-transfer-separating viral genes on two different plasmids. J. Virol. 62: 1120–1124.

    PubMed  CAS  Google Scholar 

  41. Miller, A. (1990) Retrovirus packaging cell lines. Hum Gene Ther. 1: 5–14.

    Article  PubMed  CAS  Google Scholar 

  42. Giblett, E., Anderson, J., Cohen, E et al. (1972) Adenosine Deaminase deficiency in two patients with severely impaired cellular immunodeficiency. Lancet ii 1067–1069.

    Google Scholar 

  43. Hirschorn, R., Vawter, G., Kirkpatrick, J. et al. (1979) Adenosine deaminase deficiency: frequency and comparative pathology in autosomal recessive severe combined immunodeficiency. Clin. Immunol. Immunopathol. 14: 107–20.

    Article  Google Scholar 

  44. Fischer, A. (1992) Severe combined immunodeficiencies. Immunodefic. Rev. 3: 83–100.

    PubMed  CAS  Google Scholar 

  45. Kameoka, J., Tanaka, T., Nojima, Y. et al. (1993) Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261: 466–469.

    Article  PubMed  CAS  Google Scholar 

  46. Ciruela, E, Saura, C., Canela, E. I. et al. (1996) Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett. 380: 219–223.

    Article  PubMed  CAS  Google Scholar 

  47. Martin, M., Huguet, J., Centelles, J. J. et al. (1995) Expression of ecto-adenosine deaminase and CD26 in human T cells triggered by the TCR-CD3 complex. Possible role of adenosine deaminase as costimulatory molecule. J. Immunol. 155: 4630–4643.

    PubMed  CAS  Google Scholar 

  48. Dong, R. P., Kameoka, J., Hegen, M. et al. (1996) Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J. Immunol. 156: 1349–1355.

    PubMed  CAS  Google Scholar 

  49. O’Reilly, R., Keever, C., Small, T. et al. (1990) The use of HLA-non identical T-cell depleted marrow transplants for correction of severe combined immunodeficiency disease. Immunode f. Rev. 1: 273–309.

    Google Scholar 

  50. Touraine, J. L. (1983) European experience with fetal tissue transplantation in severe combined immunodeficiency (SCID). Birth Defects 19: 139–142.

    PubMed  CAS  Google Scholar 

  51. Kurtzberg, J., Laughlin, M., Graham, M. L. et al. (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N. Engl. J. Med. 335: 157–166.

    Article  PubMed  CAS  Google Scholar 

  52. Gluckman, E. (1996) Umbilical cord blood transplant in human. Bone Marrow Transplant. 18: 166–170.

    PubMed  Google Scholar 

  53. Flake, A. W., Roncarolo, M. G., Puck, J. M. et al. (1996) Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N. Engl. J. Med. 335: 1806–1810.

    Article  PubMed  CAS  Google Scholar 

  54. Wengler, G. S., Lanfranchi, A., Frusca, T. et al. (1996) In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe com-bined immunodeficiency. Lancet 348: 1484–1487.

    Article  PubMed  CAS  Google Scholar 

  55. Hershfield, M. S. (1995) PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency. Hum. Mutat. 5: 107–112.

    Article  PubMed  CAS  Google Scholar 

  56. Kantoff, P., Kohn, D., Mitsuya, H. et al. (1986) Correction of adenosine deaminase deficiency in cultured human T and B cells by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 83: 6563–6567.

    Article  PubMed  CAS  Google Scholar 

  57. Kohn, D. B., Mitsuya, H., Ballow, M. et al. (1989) Establishment and characterization of ADA deficient human T cell lines. J. Immunol. 142: 3971–3977.

    Google Scholar 

  58. Ferrari, G., Rossini, S., Nobili, N. et al. (1992) Transfer of the ADA gene into human ADA-deficient T lymphocytes reconstitutes specific immune functions. Blood 80: 1120–4.

    Google Scholar 

  59. Bordignon, C., Yu, S., Smith, C. et al. (1989) Retroviral vector-mediated high efficiency expression of adenosine deaminase in long-term cultures of ADA deficient marrow cells. Proc. Natl. Acad. Sci. USA 86: 6748–6752.

    Google Scholar 

  60. Cournoyer, D., Scarpa, M., Mitani, K. et al. (1991) Gene transfer of adenosine deaminase into primitive human hematopoietic progenitor cells. Hum. Gene Ther. 2: 203–13.

    Google Scholar 

  61. Moritz, T., Keller, D. C., Williams, D. A. (1993) Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease. J. Exp. Med. 178: 529–36.

    Google Scholar 

  62. Sutherland, H. J., Eaves, C. J., Lansdorp, P. M. et al. (1991) Differential regulation of primitive hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78: 666–672.

    Google Scholar 

  63. Lim, B., Williams, D., Orkin, S. (1987) Retrovirus-mediated gene transfer of human adenosine deaminase: expression of functional enzyme in murine hematopoietic stem cells in vivo. Mol. Cell. Biol. 7: 3459–3465.

    Google Scholar 

  64. Belmont, J., MacGregor, G., Wager-Smith, K. et al. (1988) Expression of human adenosine deaminase in murine hematopoietic cells. Mol. Cell. Biol. 8: 5116–5125.

    Google Scholar 

  65. Wilson, J. M., Danos, O., Grossman, M. et al. (1990) Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 87: 439–43.

    Google Scholar 

  66. van Beusechem, V., Kukler, A., Einerhand, M. P. et al. (1990) Expression of human adenosine deaminase in mice transplanted with hemopoietic stem cells infected with amphotropic retroviruses. J. Exp. Med. 172: 729–736.

    Google Scholar 

  67. Einerhand, M. P., Bakx, T. A., Kukler, A. et al. (1993) Factors affecting the transduction of pluripotent hematopoietic stem cells: long-term expression of a human adenosine deaminase gene in mice. Blood 81: 254–63.

    Google Scholar 

  68. van Beusechem, V., Valerio, D. (1996) Gene transfer into hematopoietic stem cells of nonhuman primates. Hum. Gene Ther. 7: 1649–1668.

    Google Scholar 

  69. van Beusechem, V., Kukler, A., Heidt PJ et al. (1992) Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow cells. Proc. Natl. Acad. Sci. U.s.a. 89: 7640–7644.

    Google Scholar 

  70. van Beusechem, V., Bakx, T. A., Kaptein, L. C. et al. (1993) Retrovirus-mediated gene transfer into rhesus monkey hematopoietic stem cells: the effect of viral titers on transduction efficiency. Hum. Gene Ther. 4: 239–247.

    Google Scholar 

  71. Bodine, D. M., Moritz, T., Donahue, R. E. et al. (1993) Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lin-eages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82: 1975–80.

    Google Scholar 

  72. van Beusechem, V., Bart Baumeister, J., Bakx, T. A. et al. (1994) Gene transfer into nonhuman primate CD34+CD11b-bone marrow progenitor cells capable of repopulating lymphoid and myeloid lineages. Hum. Gene Ther. 5: 295–305.

    Article  PubMed  Google Scholar 

  73. Hoogerbrugge, P. M., van Beusechem, V., Fischer, A. et al. (1996) Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Ther. 3: 179–183.

    PubMed  CAS  Google Scholar 

  74. Dunbar, C. E., Seidel, N. E., Doren, S. et al. (1996) Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor. Proc. Natl. Acad. Sci. USA 93: 11871–11876.

    Article  PubMed  CAS  Google Scholar 

  75. Kohn, D. B., Hershfield, M S., Carbonaro, D. et al. (1998) T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat. Med. 4: 775–780.

    Article  PubMed  CAS  Google Scholar 

  76. Kohn, D. B., Weinberg, K. I., Nolta, J. A. et al. (1995) Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med. 1: 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  77. Blaese, R. M., Culver, K. W., Miller, A. D. et al. (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270: 475–480.

    Article  PubMed  CAS  Google Scholar 

  78. Bordignon, C., Notarangelo, L. D., Nobili, N. et al. (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270: 470–475.

    Article  PubMed  CAS  Google Scholar 

  79. Onodera, M., Ariga, T., Kawamura, N. et al. (1998) Successful peripheral T-lymphocytedirected gene transfer for a patient with severe combined immune deficiency caused by adenosine deaminase deficiency. Blood 91: 30–36.

    PubMed  CAS  Google Scholar 

  80. Osborne, W. R., Miller, A. D. (1988) Design of vectors for efficient expression of human purine nucleoside phosphorylase in skin fibroblasts from enzyme-deficient humans. Proc. Natl. Acad. Sci. USA 85: 6851–6855.

    Article  PubMed  CAS  Google Scholar 

  81. Foresman, M. D., Nelson, D. M., McIvor, R. S. (1992) Correction of purine nucleoside phosphorylase deficiency by retroviral-mediated gene transfer in mouse S49 T cell lymphoma: a model for gene therapy of T cell immunodeficiency. Hum. Gene Ther. 3: 625–31.

    Article  PubMed  CAS  Google Scholar 

  82. Nelson, D. M., Butters, K. A., Markert, M. L. et al. (1995) Correction of proliferative responses in purine nucleoside phosphorylase (PNP)-deficient T lymphocytes by retroviralmediated PNP gene transfer and expression. J. Immunol. 154: 3006–3014.

    PubMed  CAS  Google Scholar 

  83. Candotti, E, Johnston, J. A., Puck, J. M. et al. (1996) Retroviral-mediated gene correction for X-linked severe combined immunodeficiency. Blood 87: 3097–3102.

    PubMed  CAS  Google Scholar 

  84. Taylor, N., Uribe, L., Smith, S. et al. (1996) Correction of interleukin-2 receptor function in X-SCID lymphoblastoid cells by retrovirally mediated transfer of the gamma-c gene. Blood 87: 3103–3107.

    PubMed  CAS  Google Scholar 

  85. Hacein-Bey, H., Cavazzana, C. M., Le DF et al. (1996) gamma-c gene transfer into SCID Xl patients’ B-cell lines restores normal high-affinity interleukin-2 receptor expression and function. Blood 87: 3108–3116.

    Google Scholar 

  86. Cavazzana Calvo, M., S., H. -B., de Saint Basile, G. et al. (1996) Role of interleukin-2 (IL-2), IL-7, and IL-15 in natural killer cell differentiation from cord blood hematopoietic progenitor cells and from gamma chain transduced severe combined immunodeficiency X1 bone marrow cells. Blood 88: 3901–3909.

    Google Scholar 

  87. Gene Therapy for Severe Combined Immunodeficiencies

    Google Scholar 

  88. Candotti, F., Oakes, S. A., Johnston, J. A. et al. (1996) In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction. J. Exp. Med. 183: 2687–2692.

    CAS  Google Scholar 

  89. Bunting, K. D., Sangster, M. Y., Ihle, J. N. et al. (1998) Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nat. Med. 4: 58–63.

    Article  PubMed  CAS  Google Scholar 

  90. Taylor, N., Bacon, K. B., Smith, S. et al. (1996) Reconstitution of T cell receptor signaling in ZAP-70-deficient cells by retroviral transduction of the ZAP-70 gene. J. Exp. Med. 184: 2031–2036.

    Article  PubMed  CAS  Google Scholar 

  91. Dunbar, C. E., Cottler, E M., O’Shaughnessy, J. A. et al. (1995) Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraft-ment after autologous transplantation. Blood 8535: 3048–3057.

    Google Scholar 

  92. Moore, K. A., Deisseroth, A. B., Reading, C. L. et al. (1992) Stromal support enhances cell-free retroviral vector transduction of human bone marrow long-term culture-initiating cells. Blood 79: 1393–9.

    PubMed  CAS  Google Scholar 

  93. Nolta, J. A., Smogorzewska, E. M., Kohn, D. B. (1995) Analysis of optimal conditions forr retroviral-mediated transduction of primitive hematopoietic cells. Blood 1: 101–110.

    Google Scholar 

  94. Xu LC, Karlsson, S., Byrne ER et al. (1995) Long-term in vivo expression of the human glucocerebrosidase gene in nonhuman primates after CD34+ hematopoietic cell transduction with cell-free retroviral vector preparations. Proc. Natl. Acad. Sci. USA 92: 4372–4376.

    Article  PubMed  CAS  Google Scholar 

  95. Hanenberg, H., Xiao, L., Dilloo, D. et al. (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat. Med. 2: 876–882.

    Article  PubMed  CAS  Google Scholar 

  96. Lyman, S. D., James, L., van den Bos, T. et al. (1993) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells. Cell 75: 1157–1167.

    Article  PubMed  CAS  Google Scholar 

  97. Ferrari, G., Salvatori, G., Rossi, C. et al. (1995) A retroviral vector containing a muscle-specific enhancer drives gene expression only in differentiated muscle fibers. Hum. Gene Ther. 6: 733–742.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Aiuti, A., Bordignon, C. (1999). Gene Therapy for Severe Combined Immunodeficiencies. In: Blankenstein, T. (eds) Gene Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7011-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7011-5_8

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7013-9

  • Online ISBN: 978-3-0348-7011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics