Skip to main content

Gene Marking of T Lymphocytes

  • Chapter
Gene Therapy
  • 230 Accesses

Abstract

In the past years, a number of clinical trials involving the adoptive transfer of genetically modified T lymphocytes have been reported [1–3]. Gene marking studies were the first gene transfer protocols to enter clinical practice. The principal objective of a gene marking study is to introduce, in the target cells, a gene which does not modify the function of the cells but allows them to be detected, providing information on survival, distribution, and function of the infused genetically-modified cells. Moreover, gene marking studies provided crucial informations about the feasibility, safety, and efficacy of genetically-modified cells, an important pre-requisite for future gene therapy trials. To date, two general groups of marking studies have been conducted. The first group of protocols focuses on the transduction of lymphocytes with potential antitumor or antiviral activity. Target cells of these studies include tumor infiltrating lymphocytes (TIL), virus-specific cytotoxic T cells (anti-Epstein-Barr virus specific CTLs and anti-HIV specific CTLs), and donor-derived lymphocytes infused in the context of allogeneic bone marrow transplantation (BMT). The second group of gene marking studies focuses on the transduction of autologous bone marrow cells from patients with neoplastic diseases. These studies provided important information concerning the biology of BMT and the source of post-BMT relapse of neoplastic diseases. The principal purpose of these studies was to determine whether neoplastic cells, present in unpurged autologous bone marrow, contribute to relapse following autologous BMT. In all disease settings (acute leukemia, chronic myelogenous leukemia, and neuroblastoma) gene marked tumor cells were found in relapsed patients [4, 5]. This observation represents the basis for ongoing second generation studies, which focus on the comparison of different purging techniques performed prior to transplantation. The second purpose of these studies was to investigate ex vivo the possibility of introducing a gene into normal hematopoietic progenitors. The presence of the marker gene in hematopoietic progenitor cells was confirmed ex vivo by clonogenic assays. The marker gene continued to be detected and expressed for up to 4 years in the mature progeny of marrow precursor cells, suggesting that a relatively immature hematopoietic cell population had been transduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W. E (1992) Hum. Gene Ther. Science 256: 808–813.

    CAS  Google Scholar 

  2. Brenner, M. (1996) Gene marking. Hum. Gene Ther. 7: 1927–1936.

    Article  PubMed  CAS  Google Scholar 

  3. Hege, K. M., Roberts, M. R. (1996) T-cell gene therapy. Curr. Opin. Biotechnol. 7: 629–634.

    Article  PubMed  CAS  Google Scholar 

  4. Brenner, M. K., Rill, D. R., Moen, R. C. et al. (1993) Gene–marking to trace origin of relapse after autologous bone–marrow transplantation. Lancet 341: 85–86.

    Article  PubMed  CAS  Google Scholar 

  5. Deisseroth, A. B., Zu, Z., Claxton, D. et al. (1994) Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83: 3068–3076.

    PubMed  CAS  Google Scholar 

  6. Crystal, R. G. (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270: 404–410.

    Article  PubMed  CAS  Google Scholar 

  7. Bunnell, B. A., Muul, L. M., Donahue, R. E. et al. (1995) High–efficiency retroviral–mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 92: 7739–7743.

    Article  PubMed  CAS  Google Scholar 

  8. Blease, M., Blankenstein, T., Brenner, M. et al. (1995) Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. 2: 219–297.

    Google Scholar 

  9. Miller, A. D., Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6: 2895–2902.

    PubMed  CAS  Google Scholar 

  10. Cornetta, K., Morgan, R. A., Anderson, W. E. (1991) Safety issues related to retroviralmediated gene transfer in humans. Hum. Gen. Ther. 2: 5–14.

    Article  CAS  Google Scholar 

  11. Donahue, R. E., Kessler, S. W., Bodine, D. et al. (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. 176: 1125–1135.

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg, S. A., Aebersold, P., Cornetta, K. et al. (1990) Gene transfer into humans — immunotherapy of patients with advanced melanoma, using tumor–infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323: 570–578.

    Article  PubMed  CAS  Google Scholar 

  13. Rosenberg, S. A., Packard, B. S., Aebersold, P. M. et al. (1988) Use of tumor–infiltrating lymphocytes and interleukin–2 in the immunotherapy of patients with metastatic

    Google Scholar 

  14. melanoma, special report. N. Engl. J. Med. 319: 1676–1680.

    Google Scholar 

  15. Cai, Q., Rubin, J. T., Lotze, M. T. (1995) Genetically marking human cells–results of the first clinical gene transfer studies. Cancer Gene Ther. 2: 125–136.

    PubMed  CAS  Google Scholar 

  16. Economou, J. S., Belldegrun, A. S., Glaspy, J. et al. (1996) In vivo trafficking of adoptively transferred interleukin–2 expanded tumor–infiltrating lymphocytes and peripheral blood lymphocytes. Results of a double gene marking trial. J. Clin. Invest. 97: 515–521.

    CAS  Google Scholar 

  17. Thomas, E. D., Clift, R. A., Fefer, A. et al. (1986) Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann. Int. Med. 104: 155–163.

    PubMed  CAS  Google Scholar 

  18. O’Reilly, R. (1993) Bone Marrow Transplantation. Curr. Opin. Hematol.: 221–222.

    Google Scholar 

  19. Horowitz, M. M., Gale, R. P., Sondel, P. M. et al. (1990) Graft versus leukemia reactions after bone marrow transplantation. Blood 75: 555–562.

    PubMed  CAS  Google Scholar 

  20. Kernan, N. A., Bordignon, C., Collins, N. H. et al. (1989) Bone marrow failure in HLAidentical T–cell depleted allogeneic transplants for leukemia: I. Clinical aspects. Blood 74: 2227–2236.

    PubMed  CAS  Google Scholar 

  21. Kolb, H. J., Schattenberg, A., Goldman, J. M. et al. (1995) Graft–versus–leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86: 2041–2050.

    PubMed  CAS  Google Scholar 

  22. Slavin, S., Naparstek, E., Nagler, A. et al. (1996) Allogeneic cell therapy with donor peripheral bl000d cells and recombinant human interleukin–2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 87: 2195–2204.

    PubMed  CAS  Google Scholar 

  23. Tricot, G., Vesole, D. H., Jagganath, S. et al. (1996) Graft–versus–myeloma effect: proof of principle. Blood 87: 1196–1198.

    PubMed  CAS  Google Scholar 

  24. Papadopoulos, E. B., Ladanyi, M., Emanuel, D. et al. (1994) Infusions of donor leukocytes to treat Epstein–Barr virus–associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med. 330: 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  25. Riddell, S. R., Watanabe, K. S., Goodrich, J. M. et al. (1992) Restoration of viral immunity in immunodeficient humans by adoptive transfer of T cell clones. Science 257.

    Google Scholar 

  26. Riddell, S. R., Greenberg, P. D. (1995) Principles for adoptive T cell therapy of human viral diseases. Annu. Rev. Immunol. 13: 545–586.

    Article  PubMed  CAS  Google Scholar 

  27. Reusser, P., Riddel, S. R., Meyers, J. D. et al. (1991) Cytotoxic T–lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 83: 1373–1380.

    Google Scholar 

  28. Reddehase, M. J., Mutter, W., Munch, K. et al. (1987) CD8–positive T lymphocytes specific for murine cytomegalovirus immediate–early antigens mediate protective immunity. J. Virol. 61: 3102–3108.

    PubMed  CAS  Google Scholar 

  29. Lucin, P., Pavic, I., Polic, B. et al. (1992) Gamma interferon–dependant clearance of cytomegalovirus infection in salivary gland. J. Virol. 66: 1977–1984.

    PubMed  CAS  Google Scholar 

  30. Rooney, C. M., Smith, C. A., Ng, C. Y. C. et al. (1995) Use of gene–modified virus–specific T lymphocytes to control Epstein–Barr–virus related lymphoproliferation. Lancet 345: 9–13.

    Article  PubMed  CAS  Google Scholar 

  31. Strauss, S. E., Cohen, J. I., Tosato, G. et al. (1992) Epstein–Barr virus infection: biology, pathogenesis and management. Ann. Intern. Med. 118: 45–58.

    Google Scholar 

  32. Heslop, H. E., Ng, C. Y. C., Li, C. et al. (1996) Long–term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene–modified virus–specific T lymphocytes. Nat. Med. 2: 551–555.

    Article  PubMed  CAS  Google Scholar 

  33. McCune, J. M. (1991) HIV–1: the infective process in vivo. Cell 64: 351–363.

    CAS  Google Scholar 

  34. Borrow, P., Lewicki, H., Hahn, B. H. et al. (1994) Virus–specific CD8+ cytotoxic T–lymphocyte activity associated with control of viremia in primary human immunodeficiency

    Google Scholar 

  35. virus type 1 infection. J. Virol. 68: 6103–6110.

    Google Scholar 

  36. Fauci, A. S. (1988) The human immunodeficiency virus: infectivity and mechanism of pathogenesis. Science 239: 617–622.

    Article  PubMed  CAS  Google Scholar 

  37. Carmichael, A., Jin, X., Sissons, P. et al. (1993) Quantitative analysis of the human immunodeficiency virus type 1 (HIV–1)–specific cytotoxic T lymphocytes (CTL) response at different stages of HIV–1 infection: differential CTL responses to HIV–1 and Epstein–Barr virus in late disease. J. Exp. Med. 177: 249–256.

    Article  PubMed  CAS  Google Scholar 

  38. Riddell, S. R., Elliott. M., Lewinsohn, D. A. et al. (1996) T–cell mediated rejection of gene–modified HIV–specific cytotoxic lymphocytes in HIV–infected patients. Nat. Med. 2: 216–223.

    Article  PubMed  CAS  Google Scholar 

  39. Bordignon, C., Bonini, C. (1995) A clinical protocol for gene transfer into peripheral blood lymphocytes for in vivo immunomodulation of donor anti–tumor immunity in patients affected by recurrent disease after allogeneic bone marrow transplantation. Hum. Gene Ther. 2: 813–819.

    Article  Google Scholar 

  40. Mavilio, E, Ferrari, G., Rossini, S. et al. (1994) Peripheral blood lymphocytes as target cells of retroviral vector–mediated gene transfer. Blood 83: 1988–1997.

    PubMed  CAS  Google Scholar 

  41. Bonini, C., Ferrari, G., Verzeletti, S. et al. (1997) HSV–TK gene transfer into donor lymphocytes for control of allogenic graft–versus–leukemia. Science 276: 1719–1724.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Bonini, C., Bordignon, C. (1999). Gene Marking of T Lymphocytes. In: Blankenstein, T. (eds) Gene Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7011-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7011-5_13

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7013-9

  • Online ISBN: 978-3-0348-7011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics