Skip to main content

Gene Therapy for Cystic Fibrosis

  • Chapter
Gene Therapy
  • 248 Accesses

Summary

It is unarguable that results reported in the early trials of somatic gene therapy for CF are equivocal. However, the inappropriately negative response which these studies have created in some quarters should be qualified and countered. Remarkable progress has been made and independent strategies have been tested in the very few years since the CFTR gene was cloned. The inadequacies of the very early generation of adenoviruses were easily predicted, as were the inefficiencies of the first generation cationic liposomes. What is encouraging is, that these early studies have stimulated rapid re-evaluation and further development of second and third generation vectors, which can be tested in laboratory mice engineered to have the CFTR defect as a prelude to clinical trials. As with any new development of clinical medicine, the development of somatic gene therapy protocols for cystic fibrosis is likely to be incremental. Only when safe and effective methods of gene delivery have been developed, will it be appropriate to apply this form of treatment to young CF individuals prior to the onset of irreversible lung damage. Under these circumstances, there is every reason to believe that the rationale underlying CF somatic gene therapy will be realised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Welsh, M. J., Tsui, L., Boat, T. E and Beaudet, A. L. (1995) Cystic fibrosis. In: C. R. Scriver, A. L. Beaudet, W. S. Sly, D. Valle (eds), The Metabolic Basis of Inherited Disease. McGraw-Hill, Inc., New York, pp. 3799–3876.

    Google Scholar 

  2. Collins, E S. (1992) Cystic fibrosis: Molecular biology and therapeutic implications Science 256: 774–779.

    Article  PubMed  CAS  Google Scholar 

  3. Welsh, M. J. and Smith, A. E. (1995) Cystic fibrosis. Sci. Amer. 273 (6): 52–59.

    Article  PubMed  CAS  Google Scholar 

  4. Stutts, M. J., Canessa, C. M., Olsen, J. C. et al. (1995) Cftr as a cAMP-dependent regulator of sodium channels. Science 269: 847–850.

    Article  PubMed  CAS  Google Scholar 

  5. Englehardt, J. E, Zepeda, M., Cohn, J. A. et al. (1994) J. Clin. Invest. 93: 737–749.

    Article  Google Scholar 

  6. Sobonya, R. E. and Taussig, L. M. (1986) Quantitative aspects of lung pathology in cystic fibrosis. Amer. Rev. Respir. Disease 134: 290–295.

    CAS  Google Scholar 

  7. Zabner J., Couture L.A., Gregory R.J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell, 75: 207–216.

    Article  PubMed  CAS  Google Scholar 

  8. Caplen N.J., Alton E.W.F.W., Middleton, P. G. et al. (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat. Med. 1: 39–46.

    Article  PubMed  CAS  Google Scholar 

  9. Crystal, R. G., McElvaney, N. G., Rosenfeld, M. A. et al. (1994) Administration of an adenovirus containing human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat. Genet. 8: 42–51.

    Article  PubMed  CAS  Google Scholar 

  10. Knowles, M. R., Hohneker, K. W., Zhaoqing, Z. et al. (1995) A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med. 1995; 333: 823–831.

    Article  Google Scholar 

  11. Walker J., Watson, J., Holmes, C. et al. (1995) Production and characterisation of monoclonal and polyclonal antibodies to different regions of the cystic fibrosis transmembrane conductance regulator (CFTR): detection of immunologically related proteins. J. Cell Sci. 108: 2433–2444.

    PubMed  CAS  Google Scholar 

  12. Kartner, N., Augustinas, O., Jensen, T. J. et al. (1992) Mislocalization of deltaF508 CFTR in cystic fibrosis sweat gland. Nat.Genet. 1: 321–327.

    Article  PubMed  CAS  Google Scholar 

  13. Dupuit, E, Kalin, N., Brezillon, S. et al. (1995) CFTR and differentiation markers expression in non-CF and delta F508 homozygous CF nasal epithelium. J. Clin. Invest. 96 (3): 1601–1611.

    Article  PubMed  CAS  Google Scholar 

  14. Welsh, M. J. and Smith, A. E. (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73: 1251–1254.

    Article  PubMed  CAS  Google Scholar 

  15. Knowles, M., Gatzy, J. and Boucher, R. (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305 (25): 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  16. Frizzell, R. A., Rechkemmer, G. and Shoemaker, R. L. (1986) Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 233: 558–560.

    Article  PubMed  CAS  Google Scholar 

  17. Chao, A. C., Dix, J. A., Sellers, M. C. et al. (1989) Fluorescence measurement of chloride transport in monolayer cultured cells: Mechanisms of chloride transport in fibroblasts. Biophys. J. 56 (December): 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  18. Dorin, J. R., Alton, E. W. F. W. and Porteous, D. J. (1994) Mouse models for cystic fibrosis. In: J. A. Dodge, D. J. H. Brock and J. H. Widdicombe (eds), Cystic Fibrosis Current Topics. John Wiley and Sons, Chichester, pp. 3–31.

    Google Scholar 

  19. Dorin, J. R., Dickinson, P., Alton, E. W E W. et al. (1992) Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359: 211–215.

    Article  PubMed  CAS  Google Scholar 

  20. Dorin, J. R., Stevenson, B. J., Fleming, S. et al. (1994) Long-term survival of the exon 10 insertional cystic fibrosis mutant mouse is a consequence of low level residual wild-type CFTR gene expression. Mamm. Genome 5: 465–472.

    Article  PubMed  CAS  Google Scholar 

  21. Davidson, D. J., Dorin, J. R., McLachlan, G. et al. (1995) Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat. Genet. 9: 351–357.

    Article  PubMed  CAS  Google Scholar 

  22. Hyde, S. C., Gill, D. R., Higgins, C. E et al. (1993) Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362: 250–255.

    Article  PubMed  CAS  Google Scholar 

  23. Alton, E. W. F. W., Middleton, P. G., Caplen, N. J. et al. (1993) Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat. Genet. 5: 135–142.

    Article  PubMed  CAS  Google Scholar 

  24. Wilson, J. M. (1995) J. Clin. Invest. 96: 2547–2554.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, Y., Nunes, E A., Berencsi, K. et al. (1994) Inactivation of Eta in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat. Genet. 7: 362–369.

    Article  PubMed  CAS  Google Scholar 

  26. Grubb, B. R., Pickles, R. J., Ye, H. et al. (1994) Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371: 802–806.

    Article  PubMed  CAS  Google Scholar 

  27. Kotin, R. M., Siniscalo, M., Samulski, R. J. et al. (1990) Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 87: 2211–2215.

    Article  PubMed  CAS  Google Scholar 

  28. Samulski, R. J., Zhu, X., Xiao, X. et al. (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10: 3941–3950.

    PubMed  CAS  Google Scholar 

  29. Flotte, T. R., Afione, S. A., Conrad, C. et al. (1993) Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc. Natl. Acad. Sci. USA 90: 10613–10617.

    Article  PubMed  CAS  Google Scholar 

  30. Feigner, P. L., Gadek, T. R., Holm, M. et al. (1987) Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84: 7413–7417.

    Article  Google Scholar 

  31. Gao, X. and Huang, L. (1995) Cationic liposome-mediated gene transfer. Gene Ther. 2: 710–722.

    PubMed  CAS  Google Scholar 

  32. Chou, J., Rozmahel, R. and Tsui, L. -C. (1991) Characterisation of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J.Biol.Chem. 266 (36): 24471–24476.

    PubMed  CAS  Google Scholar 

  33. Woolman, P. S., Coutts, C. T., Mole, D. R. et al. (1989) Sites of deposition of aqueous aerosols: a study of efficiency of delivery systems for lung ventilation imaging in man. Nucl. Med. Commun. 10: 171–180.

    Article  PubMed  CAS  Google Scholar 

  34. Cohen, P. (1995) Creators of the forty-seventh chromosome. New Sci. (11 November): 34–37.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Porteous, D.J., Innes, J.A. (1999). Gene Therapy for Cystic Fibrosis. In: Blankenstein, T. (eds) Gene Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7011-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7011-5_10

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7013-9

  • Online ISBN: 978-3-0348-7011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics