Skip to main content

Angiogenesis — Retrospect and outlook

  • Chapter
Book cover Angiogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 61))

Abstract

The process of angiogenesis, the growth of capillary blood vessels, is fundamental to reproduction, development and repair. Under these conditions, angiogenesis is highly regulated and of short duration. In many pathological states, this regulation is deranged so that the disease itself is driven by persistent, unabated neovascularization. Thus, tumor growth and metastasis are angiogenesis-dependent and a wide variety of non-neoplastic diseases are dominated by uncontrolled angiogenesis. These “angiogenic diseases” include arthritis, psoriasis, hemangiomas, and many types of ocular neovascularization, to name but a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J: Tumor Angiogenesis. In: Cancer Medicine. Ed. by J. F. Holland, 3rd edn, Lea and Febiger, Melbourne, Pennsylvania, USA, 1991, in press.

    Google Scholar 

  2. Folkman J: “What is the evidence that tumors are angiogenesis dependent?” J Natl Canc Inst 1990; 82 (No. 1): 4–6.

    Google Scholar 

  3. Hudlicka O, Tyler KR: Angiogenesis — The growth of the vascular system. Academic Press, Harcourt Brace Jovanovich, Publishers, London, New York, 1986, pp. 1–221.

    Google Scholar 

  4. Denekamp J: The current status of targeting tumour vasculature as a means of cancer therapy: an overview. Int J Radiat Biol 1991; 60: 401–408.

    Article  Google Scholar 

  5. Moore JV, West DC: Vasculature as a target for anti-cancer therapy. In: Proceedings of the 16th L.H. Gray Conference 1991. Taylor and Francis, London, Washington D.C. (pp. 1–421). [A special tissue of the International Journal of Radiation Biology, Volume 60, Numbers 1/2, July/August 1991 ].

    Google Scholar 

  6. Klintworth GK: Corneal angiogenesis — A comprehensive critical review 1990. Springer-Verlag, New York, Berlin, London, pp. 1–135.

    Google Scholar 

  7. Folkman J, Long D, Becker F: Growth and metastasis of tumor in organ culture. 1963; 16: 453–467.

    Google Scholar 

  8. Folkman J: Tumor angiogenesis: therapeutic implications. New Eng J Med 1971; 285: 1182–1186.

    Article  Google Scholar 

  9. Carvallo T, Sade R, Folkman J, Cotran RS: Tumor angiogenesis; rapid induction of endothelial mitosis demonstrated by autoradiography. J Cell Biology 1972; 54: 408–420.

    Article  Google Scholar 

  10. Gimbrone MA Jr, Cotran R, Leapman S, Folkman J: Tumor growth neovascularization: An experimental model using rabbit cornea. J Natl Canc Inst 1974; 52: 413–427.

    Google Scholar 

  11. Auerbach R, Arensman R, Kubai L, Folkman J: Tumor-induced angiogenesis: lack of inhibition by irradiation. International Journal of Cancer 1975; 15: 241–245.

    Article  Google Scholar 

  12. Gimbrone MA Jr, Leapman S, Cotran RS, Folkman J: Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972; 136: 261–276.

    Article  Google Scholar 

  13. Langer R, Folkman J: Polymers for the sustained release of proteins and other macromolecules. Nature 1976; 263: 797–800.

    Article  Google Scholar 

  14. Folkman J, Merler E, Abernathy C, Williams G: Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–288.

    Article  Google Scholar 

  15. Jaffe EA, Nachman RL, Becker CG, Minick CR: Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J Clin Invest 1972; 52: 2745–2756.

    Article  Google Scholar 

  16. Gimbrone MA Jr, Cotran RS, Folkman J: Endothelial regeneration and turnover. Studies with human endothelial cell cultures. Ser Haematol 1973; 6: 453–455.

    Google Scholar 

  17. Haudenschild CC, Zahniser D, Folkman J, Klagsbrun M: Human endothelial cells in culture. Lack of response to serum growth factors. Exp Cell Res 1976; 98: 175–183.

    Article  Google Scholar 

  18. Folkman J, Haudenschild CD, Zetter BR: Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 1979; 76: 5217–5221.

    Article  Google Scholar 

  19. Ausprunk DH, Folkman J: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 14: 53–65.

    Article  Google Scholar 

  20. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M: Heparin-affinity purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223: 1296–1299.

    Article  Google Scholar 

  21. Fett JW, Strydom DJ, Lobb RF, Alderman WM, Bethune JL, Riordan JF, Vallee BL: Isolation and characterization of angiogenin, and angiogenic protein from human carcinoma cells. Biochemistry 1985; 24: 5480–5486.

    Article  Google Scholar 

  22. Folkman J, Klagsbrun M: Angiogenic factors. Science 1987; 235: 442–447.

    Article  Google Scholar 

  23. Maciag T, Mehlman T, Friesel R, Schreiber AB: Heparin binds endothelial cell growth factor, the principal cell mitogen in bovine brain. Science 1984; 225: 932–935.

    Article  Google Scholar 

  24. Klagsbrun M: The affinity of fibroblast growth factors (FGFs) for heparin: FGF-heparan sulfate interactions in cells and extracellular matrix. Current Opinion in Cell Biology 1990; 2: 857–863.

    Google Scholar 

  25. Folkman J: Control of angiogenesis by heparin and other sulfated polysaccharides. In: Heparin and Related Polysaccharides. Ed. by U. Lindahl, D. Lane, 1991, in press.

    Google Scholar 

  26. Vlodaysky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M: Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 1987; 84: 2292–2296.

    Article  Google Scholar 

  27. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodaysky I: A heparin-binding angiogenic protein — basic fibroblast growth factor — is stored within basement membrane. Am J Pathol 1988; 130: 393–400.

    Google Scholar 

  28. Thornton S, Mueller S, Levine E: Human endothelial cells: Use of heparin in cloning and long-term serial cultivation. Science 1983; 222: 623–625.

    Article  Google Scholar 

  29. Yayon A, Klagsbrun M, Esko J, Leder P, Omitz D: Cell surface heparin-like molecules are required for the binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–848.

    Article  Google Scholar 

  30. Montesano R, Vassali JD, Baird A, Guillemin R, Orci L: Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 1986; 83 (19): 7297–7301.

    Article  Google Scholar 

  31. Ingber DE, Folkman J: Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 1989; 109: 317–330.

    Article  Google Scholar 

  32. Motro B, Itin A, Sachs L, Keshet, E: Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc Natl Sci USA 1990; 87 (8): 3092–3096.

    Article  Google Scholar 

  33. Folkman J: Angiogenesis and its inhibitors. In: Important Advances in Oncology 1985. Ed. by V. T. DeVita Jr, S. Hellman, S. A. Rosenberg, J.B. Lippincott Co, Philadelphia, 1985, pp. 42–62.

    Google Scholar 

  34. Li WW, Casey R, Gonzales EM, Folkman J: Angiostatic steroids potentiated by sulfated cyclodextrins inhibit corneal neovascularization. Investigative Ophthalmology and Visual Science 1991; 32: 2898–2905.

    Google Scholar 

  35. Sakamoto N, Tanaka NG: Mechanism of synergistic effect of heparin and cortisone against angiogenesis and tumor growth. Cancer Journal 1988; 2 (1): 9–13.

    Google Scholar 

  36. Folkman J, Ingber DE: Angiostatic steroids, In: Anti-inflammatory Steroid Action — Basic and Clinical Aspects. Ed. by R. P. Schleimer, H. N. Claman, A.L. Oronsky. Academic Press, 1989, pp. 330–350.

    Google Scholar 

  37. White CW, Sondheimer HM, Crouch EC, Wilson H, Fan LF: “Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. New Engl J Med 1989; 320: 1197–1200.

    Article  Google Scholar 

  38. Orchard P, Smith C, Woods W, Dehner LP, Day DL, Shapiro RS: Treatment of hemangioendotheliomas with alpha-interferon. Lancet 1989; 2 (8662): 565–567.

    Article  Google Scholar 

  39. Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J: Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 1990; 348: 555–557.

    Article  Google Scholar 

  40. Nagy JA, Brown LF, Senger DR, Lanir N, Van de Water L, Dvorak AM, Dvorak HF: Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 1989; 948: 305–326.

    Google Scholar 

  41. Herron GS, Banda MJ, Clark EJ, Gavrilovic J, Werb Z: Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem 1986; 261: 2814–2818.

    Google Scholar 

  42. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991; 64: 327–336.

    Article  Google Scholar 

  43. Dvorak HF, Nagy JA, Dvorak AM: Structure of solid tumors and their vasculature — implications for therapy with monoclonal antibodies. Cancer Cells 1991; 3 (3): 77–85.

    Google Scholar 

  44. Denekamp J: Vasculature as a target of tumour therapy. In: Progress in Applied Microcirculation. Ed. by F. Hammersen, O. Hudlicka. Karger, Basel, 1984, pp. 28–38.

    Google Scholar 

  45. Bouck N: Tumor angiogenesis — the role of oncogenes and tumor suppressor genes. Cancer Cells 1990; 2 (6): 179–185.

    Google Scholar 

  46. Stetler-Stevenson WG, Brown PD, Onisto M, Levy AT, Liotta LA: Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem 1990; 265: 13933–13938.

    Google Scholar 

  47. Moses MA, Sudhalter J, Langer R: Identification of an inhibitor of neovascularization from cartilage. Science 1990; 248: 1408–1410.

    Article  Google Scholar 

  48. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D: Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095–1104.

    Article  Google Scholar 

  49. Polverini PJ, Leibovich SJ: Induction of neovascularization in vivo and endothelial cell proliferation in vitro by tumor-associated macrophages. Lab Invest 1984; 51: 635–642.

    Google Scholar 

  50. Vlodaysky I, Korner G, Ishai-Michaeli R, Baskin P, Bar-Shavit R, Fuks Z: Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 1990; 3: 203–226.

    Article  Google Scholar 

  51. Dethlefesen SM, Matsuura N, Zetter BR: Tumor growth and angiogenesis in wild type and mast cell deficient mice. Fed Amer Soc Exp Biol 1990; 4(3): A623 (Abs #2070).

    Google Scholar 

  52. Schulze-Osthoff K, Risau W, Vollmer E, Sorg C: In situ detection of basic fibroblast growth factor by highly specific antibodies. Amer J Pathol 1990; 137: 85–92.

    Google Scholar 

  53. Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. New Engl J Med 1991; 324: 1–8.

    Article  Google Scholar 

  54. Thomas KA: Fibroblast growth factors. FASEB J 1987; 1: 4343–4340.

    Google Scholar 

  55. Folkman J: Successful treatment of an angiogenic disease. New Engl J Med 1989; 320 (8): 1211–1212.

    Article  Google Scholar 

  56. Stinson WG, Miller JW, Puliafito CA, Folkman J: Alpha-interferon treatment of experimental iris neovascularization. Investigative Ophthalmology and Visual Science 1991; 32 (4): 1046 (Abstract #1855).

    Google Scholar 

  57. Fung W: Interferon Alpha 2A for treatment of age-related macular degeneration. American Journal of Ophthalmology 1991; 112 (3): 349–350.

    Google Scholar 

  58. Folkman J, Klagsbrun M: A family of angiogenic polypeptides. Nature 1987; 329: 671–672.

    Article  Google Scholar 

  59. Kerbel RS: Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays 1991; 13 (1): 31–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Folkman, J. (1992). Angiogenesis — Retrospect and outlook. In: Steiner, R., Weisz, P.B., Langer, R. (eds) Angiogenesis. Experientia Supplementum, vol 61. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7001-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7001-6_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7003-0

  • Online ISBN: 978-3-0348-7001-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics