Skip to main content

Role of Metallothionein in Detoxification and Tolerance to Transition Metals

  • Chapter
Metallothionein II

Part of the book series: Experientia Supplementum ((EXS,volume 52))

Abstract

Animal tolerance to the transition metals cadmium and zinc is hereditary. The evolution to a high level of resistance can be accelerated through mutation and selective pressure. We have studied inbred strains of mice and mutants of Chinese hamster ovary cells resistant to cadmium to further these understandings. Results with whole animals show that the difference in the rate and level of metallothionein accumulation is at most twofold between sensitive and resistant strains. However, with cadmium resistant CHO mutant cells, there is an over 60 fold increase in metallothionein and its mRNA upon induction. These mutants show over 60 fold amplification in metallothionein genes. These results offer a direct contrast in the correlation between elevation of metal resistance and increases in metallothionein between two genetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ragi, J.H.R. and Nordberg, M. (1979) Metallathignein, Birkhauser Verlag, Basel.

    Google Scholar 

  2. Kimura, M. (1981) Ragaku no Ryoiki Zokan 126, 47.

    Google Scholar 

  3. Hamer, D.H., Thiele, D.J. and Lemontt, J.E. (1985) Science 228, 685.

    Article  Google Scholar 

  4. Karin, M. (1985) Cell 41, 9.

    Article  Google Scholar 

  5. Danielson, K.G., Ohi, S. and Huang, P.C. (1982) Proc. Natl. Acad. Sci. USA 79, 2301.

    Article  Google Scholar 

  6. Savino, W., Huang, P.C., Corrigan, A., Berrich, S. and Dardenne, M. (1984) J. Histochem. Cytochem. 32, 942.

    Article  Google Scholar 

  7. Danielson, R.G., Ohi, S. and Huang, P.C. (1982) J. Histochem. Cytochem. 30, 1033.

    Article  Google Scholar 

  8. Templeton, D.M., Banerjee, D. and Cherian, M.G. (1985) Can. J. Biochem. Cell Biol. 63, 16.

    Article  Google Scholar 

  9. Briggs, R.W. and Armitage, I.M. (1982) J. Biol. Chen. 257, 1259.

    Google Scholar 

  10. Laib, J.E., Shaw, C.F. III and Petering, D.H. (1985) Biochemistry 24, 1977.

    Article  Google Scholar 

  11. Vasak, M., Hawkes, G.E., Nicholson, J.R. and Sadler, P.J. (1985) Biochemistry 24, 740.

    Article  Google Scholar 

  12. Nielson, R.B., Atkin, C.L. and Winge, D.R. (1985) J. Biol Chem. 260. 5342.

    Google Scholar 

  13. Kimura, M., Otaki, N., Yoshiki, S., Suzuki, M., Horiuchi, N. and Suda, T. (1974) Arch. Biochem. Biophys. 165, 340.

    Article  Google Scholar 

  14. Norseth, T. (1975) Nature 257, 136.

    Article  Google Scholar 

  15. Rostial, R., Rello, D., Rabar, I., Maljkovic, T. and Blanusa, M. (1979) Arch. Industrial Hygiene and Toxicology 30, (suppl.) 319.

    Google Scholar 

  16. Rotsonis, F.N. and Rlaassen, C.D. (1978) Toxicol. and Appl. Pharmacol. 46, 39.

    Google Scholar 

  17. Rito, H., Tazawa, T., Youki, O., Sato, T. and Ishikawa, T. (1982) Comp. Biochem. Physiol. 73C, 135.

    Article  Google Scholar 

  18. Endresen, L., Bakka, A., Glennas, A., Tviet, R.M. and Rugstad, H.E. (1983) Toxicol. Pharmacol. 67, 274.

    Article  Google Scholar 

  19. Webb, M. and Vershoyle, R.D. (1976) Biochem. Pharmacol. 25, 673.

    Article  Google Scholar 

  20. Ohi, S., Cardenosa, G., Pine, R. and Huang, P.C. (1981) J. Biol. Chem. 256., 2180.

    Google Scholar 

  21. Yoshida, A., Kaplam, B.E. and Kimura, M. (1979) Proc. Natl. Acad. Sci. USA 76., 486.

    Google Scholar 

  22. Taylor, B.A., Heiniger, H.J. and Meier, H. (1973) Proc. Soc. Exp. Biol. Med. 143, 629.

    Article  Google Scholar 

  23. Cox, D.R. and Palmfiter, R.D. (1983) Human Genetics 64, 61.

    Article  Google Scholar 

  24. Palacek, E. and Pechan, Z. (1971) Anal. Biochem. 42, 59.

    Article  Google Scholar 

  25. Olafson, R.W. and Sim, R.G. (1979) Anal. Biochem. 100, 343.

    Article  Google Scholar 

  26. Hunt, D.M. and Mhlanga, T. (1983) Biochem. Genet. 21., 609.

    Google Scholar 

  27. Tsunoo, H., Nakajima, H., Hata, A. and Kimura, M. (1979) Toxicology Letters 4, 253.

    Article  Google Scholar 

  28. Hata, A., Tsunoo, H., Nakajima, H., Shintakua, K. and Kimura, M. (1980) Chen. Biol. Interactions 32, 29.

    Article  Google Scholar 

  29. Piletz, J.E., Anderson, R.D., Birren, B.W. and Herschman, H.R. (1985) Eur. J. Biochem. 131, 489.

    Article  Google Scholar 

  30. Chellman, G.J., Shaikh, Z.A. and Baggs, R.B. (1984) Toxicology 30, 157.

    Article  Google Scholar 

  31. Rugstad, H.E. and Norseth, T. (1975) Nature 257, 136.

    Article  Google Scholar 

  32. Rugstad, H.E. and Norseth, T. (1978) Biochem. Pharmacol. 27, 647.

    Google Scholar 

  33. Hildebrand, C.E., Tobey, RA., Campbell, E.W. and Enger, M.D. (1979) Exp. Cell Res. 124, 237.

    Article  Google Scholar 

  34. Gick, G., McCarty, R.S., Jr., McCarty, R.S., Sr. (1981) Exp. Cell. Res. 132, 23.

    Article  Google Scholar 

  35. Lucis, O.J., Shaikh, Z.A. and Embil, J.A., Jr. (1970) Experimentia 26, 1109.

    Article  Google Scholar 

  36. Webb, M. and Daniel, M. (1975) Chem. Biol. Interactions 10, 269.

    Article  Google Scholar 

  37. Beach, L.R. and Palmiter, R.D. (1981) Proc. Natl. Acad. Sci. USA 78, 2110.

    Article  Google Scholar 

  38. Gick, G. and McCarty, R.S., Sr. (1981) J. Biol. Chem. 257, 9049.

    Google Scholar 

  39. Crawford, B.D., Enger, D., Griffith, B.B., Griffith, J.R., Hanners, J.L., Longmire, J.L., Munk, A.C., Stallings, R.L., Tesmer, J.G., Walters, RA. and Hildebrand, C.E. (1985) Mol. Cell. Biol. 5, 320.

    Google Scholar 

  40. Corrigan, A.J. and Huang, P.C. (1982) Biol. Trace Elements Res. 5, 25.

    Article  Google Scholar 

  41. Huang, P.C., Smith, B., Bohdan, P. and Corrigan, A.J. (1980) Biol. Trace Elements Res. 2, 211.

    Article  Google Scholar 

  42. Gick, G. and McCarty, R.S., Sr. (1983) Toxicology 26, 275.

    Article  Google Scholar 

  43. Durnam, D.M. and Palmiter, R.D. (1984) Mol. Cell. Biol. 4, 484.

    Google Scholar 

  44. Griffith, B.B., Walter, R.A., Enger, M.D., Hildebrand, C.E. and Griffith, J.R. (1983) Nucl. Acids Res. 11, 901.

    Article  Google Scholar 

  45. White, B.A. and Bancroft, F.C. (1982) J. Biol. Chem. 257, 8569.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Basel AG

About this chapter

Cite this chapter

Huang, P.C., Morris, S., Dinman, J., Pine, R., Smith, B. (1987). Role of Metallothionein in Detoxification and Tolerance to Transition Metals. In: Kägi, J.H.R., Kojima, Y. (eds) Metallothionein II. Experientia Supplementum, vol 52. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6784-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6784-9_43

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6786-3

  • Online ISBN: 978-3-0348-6784-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics