Advertisement

Isolation and Regulation of Expression of the Neurospora Crassa Copper Metallothionein Gene

  • K. Münger
  • U. A. Germann
  • Konrad Lerch
Part of the Experientia Supplementum book series (EXS, volume 52)

Abstract

The N. crassa CuMT gene has been cloned and its nucleotide sequence determined., To this end an MT specific undecanucleotide was synthesized and used for cDNA synthesis with enriched MT mRNA as a template. Sequence analysis of the cDNA obtained allowed the synthesis of a unique 21mer which was used as a hybridization probe to screen a genomic DNA library of N. crassa. Several positive clones were isolated and subjected to restriction and sequence analysis. In agreement with the published amino acid sequence, the gene codes for a polypeptide of 26 amino acid residues in length. The coding region is interrupted by a small intron. Compared to the structure of mammalian MT genes the intron-exon boundaries are located in different sequence positions. The induction of MT mRNA was studied by Northern analysis. Maximum levels of MT mRNA were detected about 1 hour after addition of copper ions to mycelium of N. crassa. The half-life time of the messenger was estimated as 2.5 hours. The CuMT amounts reach a maximum level at 3 hours after induction and thereafter remain constant.

Keywords

Sequence Position Sucrose Density Gradient Centrifugation Cysteinyl Residue Rabbit Reticulocyte Lysate System Phosphotriester Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lerch, K. (1980) Nature 284, 368–370.CrossRefGoogle Scholar
  2. 2.
    Beltramini, M. and Lerch, K. (1983) Biochemistry 22, 2043–2048.CrossRefGoogle Scholar
  3. 3.
    Vogel, N.J. (1956) Microbial Genet. Bull. 13, 42–43.Google Scholar
  4. 4.
    Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. and Rutter, W.J. (1979) Biochemistry 18, 5294–5299.CrossRefGoogle Scholar
  5. 5.
    Aviv, J. and Leder, P. (1972) Proc. Natl. Acad. Sci. USA 69, 1408–1412.CrossRefGoogle Scholar
  6. 6.
    Noll, H. (1967) Nature 215, 360–363.CrossRefGoogle Scholar
  7. 7.
    Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular cloning, Cold Spring Harbour Laboratory.Google Scholar
  8. 8.
    Miyoshi, K., Miyaka, T., Hozumi, T. and Itakura, K. (1980) Nucleic Acids Res. 8, 5473–5490.CrossRefGoogle Scholar
  9. 9.
    Miyoshi, K., Huang, T. and Itakura, K. (1980) Nucleic Acids Res. 8, 5491–5505.CrossRefGoogle Scholar
  10. 10.
    Schechtman, M.G. and Yanofsky, C. (1983) J. Mol. Appl. Genet. 2, 83–99.Google Scholar
  11. 11.
    Münger, K., Germann, U.A. and Lerch, K. (1985) EMBO J. 4, 2665–2668.Google Scholar
  12. 12.
    Maxam, A.M. and Gilbert, W. (1980) Meth. Enzymol. 65, 499–560.CrossRefGoogle Scholar
  13. 13.
    Sanger, F., Nicklen, S. and Coulson, A.R. (1979) Proc. Natl. Acad. Sci. USA 74, 5463–5468.CrossRefGoogle Scholar
  14. 14.
    Thomas, P.S. (1980) Proc. Natl. Acad. Sci. USA 77, 5201–5205.CrossRefGoogle Scholar
  15. 15.
    Durnam, D.M. and Palmiter, R.D. (1983) Anal. Biochem 131, 385–393.CrossRefGoogle Scholar
  16. 16.
    Lerch, K. and Beltramini, M. (1983) Chemica Scripta 21, 109–115.Google Scholar
  17. 17.
    Ohi, S., Cardenosa, G., Pine, R. and Huang, P.C. (1981) J. Biol. Chem. 256, 2180–2184.Google Scholar
  18. 18.
    Woudt, L.P., Pastink, A., Kempers-Veenstra, A.E., Janson, A.E.M., Mager, W.H. and Planta, R.J. (1983) Nucleis Acids Res. 11, 5347–5360.CrossRefGoogle Scholar
  19. 19.
    Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C. and Chambon, P. (1980) Science 209, 1406–1414.CrossRefGoogle Scholar
  20. 20.
    Breathnach, R. and Chambon, P. (1981) Annu. Rev. Biochem. 50, 349–383.CrossRefGoogle Scholar
  21. 21.
    Karin, M., Haslinger, A., Holgreve, H., Richards, R.I., Krauter, P., Westphal, H.M. and Beato, M. (1984) Nature 308, 513–519.CrossRefGoogle Scholar
  22. 22.
    Carter, A.D., Felber, B.K., Walling, M.-J., Jubier, M.-F., Schmidt, C.J. and Hamer, D.H. (1984) Proc. Natl. Acad. Sci. USA 81, 7392–7396.CrossRefGoogle Scholar
  23. 23.
    Karin, M., Najarian, R., Haslinger, A., Valenzuela, P., Welch, J. and Fogel, S. (1984) Proc. Natl. Acad. Sci. USA 81, 337–341.CrossRefGoogle Scholar
  24. 24.
    Proudfoot, N.J. and Brownlee, G.G. (1976) Nature 263, 211–214.CrossRefGoogle Scholar
  25. 25.
    Zaret, K.S. and Sherman, F. (1982) Cell 28, 563–573.CrossRefGoogle Scholar
  26. 26.
    Breathnach, R., Benoist, C., O’Hare, K., Gannon, F. and Chambon, P. (1978) Proc. Natl. Acad. Sci. USA 75, 4853–4857.CrossRefGoogle Scholar
  27. 27.
    Langford, C.J. and Gallwitz, D. (1983) Cell 33, 519–527.CrossRefGoogle Scholar
  28. 28.
    Langford, C.J., Klinz, F.-J., Donath, C. and Gallwitz, D. (1984) Cell 36, 645–653.CrossRefGoogle Scholar
  29. 29.
    Glanville, N., Durnam, D.N. and Palmiter, R.D. (1981) Nature 292, 267–269.CrossRefGoogle Scholar
  30. 30.
    Karin, M. and Richards, R.I. (1982) Nature 299, 797–802.CrossRefGoogle Scholar
  31. 31.
    Karin, M., Haslinger, A., Holtgreve, H., Cathala, G., Slater, E. and Baxter, J.D. (1984) Cell 36, 371–379.CrossRefGoogle Scholar
  32. 32.
    Durnam, D.M. and Palmiter, R.D. (1981) J. Biol. Chem. 256, 5712–5716.Google Scholar
  33. 33.
    Hager, L.J. and Palmiter, R.D. (1981) Nature 291, 340–342.CrossRefGoogle Scholar
  34. 34.
    Karin, M. and Richards, R.I. (1984) Env. Health Persp. 54, 111–115.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1987

Authors and Affiliations

  • K. Münger
    • 1
  • U. A. Germann
    • 1
  • Konrad Lerch
    • 1
    • 2
  1. 1.Biochemisches Institut Universität ZürichZürichSwitzerland
  2. 2.Biochemisches Institut der Universität ZürichZürichSwitzerland

Personalised recommendations