Skip to main content

Protoplasts of Filamentous Fungi in Genetics and Metabolite Production

  • Chapter

Part of the book series: EXS 46: Experientia Supplementum ((EXS,volume 46))

Abstract

Fungal protoplasts are interesting structures for genetic studies. They can be fused and their fusion products can revert to osmotic stable cells. The ability to fuse protoplasts of diverse origin makes them versatile tools in fundamental and applied genetics.

Intraspecies protoplast fusion provides an efficient method to induce the parasexual cycle, making genetic analysis as well as strain breeding through mitotic recombination feasible in all kinds of species, regardless the occurrence of parasexuality by conventional means.

Interspecies protoplast fusion allows the generation of different types of hybrids, depending on somatic and/or nuclear compatibility. Crosses between closely related species resulted in the formation of stable haploid recombinants as the consequence of genetic processes similar as occurring in the intraspecies parasexual cycle. From fusions between less related species hybrid progeny with differences in morphology and stability arose. Unstable hybrids segregated to other hybrid progeny or to one of the parental species, without recovery of the other parent. The exact genetic background of these hybrids remained obscure.

Several studies demonstrated that the novel genetic combination arisen after interspecies protoplast fusion could result in changed gene expression and in the synthesis of novel or hybrid molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Umetsu H, Nakai T, Sasage D (1982) Agric Biol Chem 46: 1955–1957

    Google Scholar 

  • Anné J (1977) Agricultura 25: 1–117

    Google Scholar 

  • Anné J (1982a) FEMS Microbiol Letters 14: 191–196

    Google Scholar 

  • Anné J (1982b) Eur J Appl Microbiol Biotechnol 15: 41–46

    Google Scholar 

  • Anné J, Eyssen H (1978) FEMS Microbiol Letters 4: 87–90

    Google Scholar 

  • Anné J, Eyssen H, De Somer P (1974) Arch Microbiol 98: 159–166

    Google Scholar 

  • Anné J, Eyssen H, De Somer P (1976) Nature 262: 719–721

    Google Scholar 

  • Anné J, Peberdy JF (1975) Arch Microbiol 105: 201–205

    Google Scholar 

  • Anné J, Peberdy JF (1976) J Gen Microbiol 92: 413–417

    Google Scholar 

  • Anné J, Peberdy JF (1981) Trans Brit Mycol Soc 77: 401–408

    Google Scholar 

  • Azevedo JL, Bonatelli Jr R (1982) In: Krumphanzl V, Sikyta B, Vanek Z (eds) Overproduction of Micro bial Products, Academic Press, London pp 439–450

    Google Scholar 

  • Baldwin JE, Keeping JW, Singh P, Vallejo CA (1981) Biochem J 194: 649–651

    Google Scholar 

  • Ball C (1982) In: Krumphznel V, Sikyta B, Vanek Z (eds) Overproduction of Microbial Products, Academic Press, London pp 515–534

    Google Scholar 

  • Ball C, Lawrence AJ, Butler JM, Morrison KB (1978) Eur J Appl Microbiol Biotechnol 5: 95–102

    Google Scholar 

  • Balzarini J (1977) Protoplast Formation of Moniliella tomentosa using Extracellular Enzymes Produced by Different Soil Microorganisms. Thesis KULeuven

    Google Scholar 

  • Behling RA, Fischer AG (1980) Int J Biochem 11: 449–455

    Google Scholar 

  • Benitez T, Ramos S, Garcia Archa I (1975) Arch Microbiol 103: 199–203

    Google Scholar 

  • Berliner MD (1971) Mycologia 63: 819–824

    Google Scholar 

  • Binding H, Weber HJ (1974) Molec Gen Genet 135: 273–276

    Google Scholar 

  • Bojnanska A, Sipiczki M, Ferenczy L (1980) Acta Microbiol Acad Sci Hung 27: 305–307

    Google Scholar 

  • Bost PE, Demain AL (1977) Biochem J 162: 681–687

    Google Scholar 

  • Calam CT, Daglish CB, McCann EP (1976) In: MacDonald KD (ed) Second International Symposium on the Genetics of Industrial Microorganisms, Academic Press, London pp 273–287

    Google Scholar 

  • Caten CE, Jinks JL (1966) Trans Brit Mycol Soc 49: 81–93

    Google Scholar 

  • Chang LT, Terasaka DT, Elander RP (1982) Developm Industr Microbiol 23: 21–29

    Google Scholar 

  • Croft JH, Dales RBG, Turner G, Earl A (1980) In: Ferenczy L, Farkas GL (eds) Advances in Protoplast Research, Pergamon Press, Oxford, Budapest pp 85–92

    Google Scholar 

  • Croft JH, Jinks JL (1977) In: Smith JE, Pateman JA (eds) Genetics and Physiology of Aspergillus, Academic Press, London pp 339–360

    Google Scholar 

  • Dales RBG, Croft JH (1977) FEMS Microbiol Letters 1: 201–204

    Google Scholar 

  • De Vries OMH, Wessels JGH (1973a) Antonie Van Leeuwenhoek 39: 397–400

    Google Scholar 

  • De Vries OMH, Wessels JGH (1973b) J Gen Microbiol 76: 319–330

    Google Scholar 

  • Elander RP, Espenshade MA, Pathak SG, Pan CH (1973) In: Vanek Z, Hostalek Z, Cudlin J (eds) Genetics of Industrial Microorganisms, Elsevier, Amsterdam, London, New York pp 239–253

    Google Scholar 

  • Emerson S (1963) Genetica 34: 162–182

    Google Scholar 

  • Emerson S, Emerson MR (1958) Proc Natl Acad Sci USA 44: 669–671

    Google Scholar 

  • Eveleigh DE, Sietsma JH, Haskins RH (1968) J Gen Microbiol 52: 89–97

    Google Scholar 

  • Fawcett PA, Loder PB, Duncan MJ, Beesley TJ, Abraham EP (1973) J Gen Microbiol 79: 293–309

    Google Scholar 

  • Ferenczy L (1976) In: Dudits D, Farkas GL, Maliga P (eds) Cell Genetics in Higher Plants, Akadémiai Kaido, Budapest pp 171–182

    Google Scholar 

  • Ferenczy L (1981) In: Glover SW, Hopwood DA (eds) Genetics as a Tool in Microbiology, Cambridge University Press, Cambridge pp 1–34

    Google Scholar 

  • Ferenczy L, Kevei F, Szegedi M (1975) Experientia 31: 1028–1029

    Google Scholar 

  • Ferenczy L, Szegedi M, Kevei F (1977) Experientia 33: 184–186

    Google Scholar 

  • Fincham JRS, Day PR (1977) Fungal Genetics, 3rd ed, Blackwell Scientific, Oxford

    Google Scholar 

  • Fodor K, Demiri E, Alfödi L (1978) J Bacteriol 135: 68–70

    Google Scholar 

  • Genthner FJ, Borgia PT (1978) J Bacteriol 134: 349–352

    Google Scholar 

  • Gooday GW (1977) J Gen Microbiol 99: 1–11

    Google Scholar 

  • Hamilton JB, Calvet J (1964) J Bacteriol 88: 1084–1086

    Google Scholar 

  • Hamlyn PF, Bradshaw RE, Mellon FM, Santiago CM, Wilson JM, Peberdy JF (1981) Enzyme Microbiol Technol 3: 321–325

    Google Scholar 

  • Hamlyn PF, Ball C (1979) In: Sebek OK, Laskin AI (eds) Genetics of Industrial Microorganisms, American Society for Microbiology, Washington pp 185–191

    Google Scholar 

  • Hashiba T, Yamada M (1982) Phytopathology 72: 849–853

    Google Scholar 

  • Hastie AC (1973) Trans Brit Mycol Soc 60: 511–523

    Google Scholar 

  • Hopwood DA, Wright HM (1981) J Gen Microbiol 126: 21–27

    Google Scholar 

  • Isaac S, Gokhale AV (1982) Trans Brit Mycol Soc 78: 389–394

    Google Scholar 

  • Kao KN, Michayluk MR (1974) Planta 115: 355–367

    Google Scholar 

  • Kevei F, Pelle T (1979) In: Fifth International Protoplast Symposium, Szeged, Hungary, Abstract Book p 50

    Google Scholar 

  • Kevei F, Peberdy JF (1977) J Gen Microbiol 102: 255–262

    Google Scholar 

  • Kohsaka M, Demain AL (1976) Biochem Biophys Res Commun 70: 465–473

    Google Scholar 

  • Lederberg J (1956) Proc Natl Acad Sci USA 42: 574–577

    Google Scholar 

  • Levi C, Sanchez-Rivas C, Schaeffer P (1977) FEMS Microbiol Letters 2: 323–326

    Google Scholar 

  • Lewis LA (1969) J Gen Microbiol 59: 359–367

    Google Scholar 

  • Lilley BL, Selitrennikoff CP (1982) Exp Mycol 6: 203–209

    Google Scholar 

  • MacDonald CE, Berliner MD (1972) Appl Microbiol 24: 993–994

    Google Scholar 

  • MacDonald KD, Holt G (1976) Sci Progr Oxford 63: 547–573

    Google Scholar 

  • Makins JF, Allsop A, Holt G (1981) J Gen Microbiol 122: 339–343

    Google Scholar 

  • Makins JF, Holt G, MacDonald KD (1980) J Gen Microbiol 119: 397–407

    Google Scholar 

  • Martinoia E, Heck U, Boiler Th, Wiemken A, Matile Ph (1979) Arch Microbiol 120: 31–34

    Google Scholar 

  • Mishra NC, Tatum ET (1972) Proc Natl Acad Sci USA 69: 312–313

    Google Scholar 

  • Musilkova M, Fencl Z, Seichertova O (1969) Fol Microbiol 14: 47–50

    Google Scholar 

  • Nagata T (1978) Naturwissenschaften 65: 263–264

    Google Scholar 

  • Ninnemann H (1980) Plant Physiol 65 (suppl 6): 6

    Google Scholar 

  • Nüesch J, Treichler HJ, Liersch M (1973) In: Vanek Z, Hostalek Z, Cudlin J (eds) Genetics of Industrial Microorganisms, Vol 2, Elsevier, Amsterdam, London, New York pp 309–334

    Google Scholar 

  • Ohnuki T, Etoh Y, Beppu T (1982) Agric Biol Chem 46: 451–458

    Google Scholar 

  • Paris S (1977) Mycopathologia 61: 67–75

    Google Scholar 

  • Peberdy JF (1979) Ann Rev Microbiol 33: 21–39

    Google Scholar 

  • Peberdy JF (1980) In: Ferenczy L, Farkas GL (eds) Advances in Protoplast Research, Pergamon Press, Oxford, Budapest pp 63–72

    Google Scholar 

  • Peberdy JF, Bradshaw RE (1982) In: Krumphanzl V, Sikyta B, Vanek Z (eds) Overproduction of Microbial Products, Academic Press, London pp 371–380

    Google Scholar 

  • Peberdy JF, Eyssen H, Anne J (1977) Molec Gen Genet 157: 281–284

    Google Scholar 

  • Pesti M, Konszky E, Erdei J, Polya K, Ferenczy L (1980) Acta Microbiol Acad Sci Hung 27: 249

    Google Scholar 

  • Raper KB, Thorn C (1949) A Manual of the Penicillia, William & Wilkins Company, Baltimore

    Google Scholar 

  • Reyes F, Lahoz R (1976) Antonie van Leeuwenhoek 42: 457–460

    Google Scholar 

  • Riba G (1978) Entomophaga 23: 417–421

    Google Scholar 

  • Rowlands RT, Turner G (1973) Molec Gen Genet 126: 201–206

    Google Scholar 

  • Schafrick MT, Horgen PA (1979) Cytobios 22: 97–104

    Google Scholar 

  • Schlegel B, Ihn W, Fleck WF (1980) Z Allg Mikrobiol 20: 531–534

    Google Scholar 

  • Selitrennikoff CP (1979) Biochim Biophys Acta 571: 224–232

    Google Scholar 

  • Selitrennikoff CP, Lilley BL, Zucker R (1981) Exp Mycol 5: 155–161

    Google Scholar 

  • Selitrennikoff CP, Zucker R (1982) Exp Mycol 6: 65–70

    Google Scholar 

  • Simpson IN, Caten CE (1980) J Gen Microbiol 121: 5–16

    Google Scholar 

  • Sipiczki M (1979) Current Microbiol 3: 37–40

    Google Scholar 

  • Spalla C, Marnati MP (1978) In: Hütter R, Leisinger T, Nüesch J, Wehrli W (eds) Antibiotics and Other Secondary Metabolites, Academic Press, London pp 219–232

    Google Scholar 

  • Spalla C, Marnati MP (1982) In: Krumphanzl V, Sikyta B, Vanek Z (eds) Overproduction of Microbial Products, Academic Press, London pp 563–568

    Google Scholar 

  • Stewart GG (1981) Can J Microbiol 27: 973–990

    Google Scholar 

  • Szczesna-Skorupa E, Filipowicz W, Paszewski A (1981) Eur J Biochem 121: 163–168

    Google Scholar 

  • Trave P, Bastide JM, Bastide M (1974) CR Acad Sci Paris 279: 979–982

    Google Scholar 

  • Uchida K (1980) In: Sakaguchi K, Okanishi M (eds) Molecular Breeding and Genetics of Applied Microorganisms, Academic Press, Tokyo pp 103–105

    Google Scholar 

  • Uchida K, Ishitani C, Ikeda Y, Sakaguchi K (1958) J Gen Appl Microbiol 4: 31–38

    Google Scholar 

  • Van den Broek HWJ, Stunnenberg HG, Wennekes LMS (1979) Microbios 26: 115–128

    Google Scholar 

  • Van der Valk P, Wessels JGH (1976) Protoplasma 90: 65–87

    Google Scholar 

  • Van Heusden AW, Debets F, Bos CJ (1982) In: Symposium on Genetic Tools in Medical and Industrial Microbiology, Lunteren, The Netherlands, Abstract Book p 34

    Google Scholar 

  • Van’t Sant P, Mak JFC, Kroon AM (1981) Eur J Biochem 121: 21–26

    Google Scholar 

  • Villanueva JR, Garcia Archa I (1971) Methods Microbiol 4: 665–718

    Google Scholar 

  • Vournakis JN, Elander RP (1983) Science 219: 703–709

    Google Scholar 

  • Weber H, Förster W, Jacob H-E, Berg H (1981) Z Allg Mikrobiol 21: 555–562

    Google Scholar 

  • Weibull C (1953) J Bacteriol 66: 688–695

    Google Scholar 

  • Weibull C (1968) In: Guze LB (ed) Microbial Protoplasts, Spheroplasts and L-Forms, William & Wilkins Company, Baltimore pp 62–73

    Google Scholar 

  • Zonneveld BJM (1973) Developm Biol 34: 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Basel AG

About this chapter

Cite this chapter

Anné, J. (1983). Protoplasts of Filamentous Fungi in Genetics and Metabolite Production. In: Potrykus, I., Harms, C.T., Hinnen, A., Hütter, R., King, P.J., Shillito, R.D. (eds) Protoplasts 1983. EXS 46: Experientia Supplementum, vol 46. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6776-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6776-4_21

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6777-1

  • Online ISBN: 978-3-0348-6776-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics