Skip to main content

Yeast Strain Improvement by Protoplast Fusion and Transformation

  • Chapter
Protoplasts 1983

Part of the book series: EXS 46: Experientia Supplementum ((EXS,volume 46))

Abstract

Yeasts are fungi that exist predominantly in the unicellular state. The study of yeasts has contributed much to our knowledge of cellular and molecular biology. In addition, these lower eukaryotes are an extremely important group of industrial micro-organisms. Of particular importance is the yeast Saccharomyces cerevisiae, which is used in the baking, brewing and alcohol production industries. The breeding of industrial yeasts to meet both product and process requirements is currently an active area of research. The techniques available for yeast strain improvement include the traditional methods of sexual hybridization and mutagenesis, and the new procedures of protoplast fusion and transformation. This review is concerned with the nature and application of the new methods to the genetic manipulation of yeasts for strain improvement and the study of molecular and cellular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmark BM, Morgan AJ, Whittaker PA (1978) Molec. gen. Genet. 159: 297–299

    Google Scholar 

  • Anne J, Peberdy JF (1975) Arch. Microbiol. 105: 201–205

    Google Scholar 

  • Anne J, Peberdy JF (1976) J. gen. Microbiol. 92: 413–417

    Google Scholar 

  • Arima K, Takano I (1979a) Molec. gen. Genet. 173: 271–277

    Google Scholar 

  • Arima K, Takano I (1979b) Genetics 93: 1–12

    Google Scholar 

  • Barney MC, Jansen GP, Heibert JR (1980) ASBC Journal 38: 1–5

    Google Scholar 

  • Beach D, Piper M, Shall S (1980) Nature 284: 185–187

    Google Scholar 

  • Beach D, Nurse P (1981) Nature 290: 140–142

    Google Scholar 

  • Becher D, Böttcher F (1980) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 105–111

    Google Scholar 

  • Becher D, Conrad B, Böttcher F (1982) Current Genetics 6: 163–165

    Google Scholar 

  • Beggs JD (1978) Nature 275: 104–109

    Google Scholar 

  • Beggs JD, van den Berg J, van Ooyen A, Weissmann C (1980) Nature 283: 835–840

    Google Scholar 

  • Beggs JD (1981) In: Williamson R (ed) Genetic engineering 2: 175–203

    Google Scholar 

  • Blanc H, Gerbaud C, Slonimski PP, Guerineau M (1979) Molec. gen. Genet. 176: 335–342

    Google Scholar 

  • Böttcher F, Becher D, Klinner U, Samsonova IA, Schllowa B, In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 99–104

    Google Scholar 

  • Broach JR, Strathern JN, Hicks JB (1979) Gene 8: 121–133

    Google Scholar 

  • Broach JR (1982) Cell 28: 203–204

    Google Scholar 

  • Chepurnaya OV, Kozhina TN, Zakharov IA (1981) Genetika 17: 427–430

    Google Scholar 

  • Chepurnaya OV, Kozhina TN, Zakharov IA (1982) Genetika 18: 1784–1787

    Google Scholar 

  • Chevallier MR, Aigle M (1979) FEBS Letters 180: 179–180

    Google Scholar 

  • Christensen BE (1979) Carlsberg Res. Commun. 44: 225–233

    Google Scholar 

  • Clarke L, Carbon J (1980) Nature 287: 504–509

    Google Scholar 

  • Das S, Hollenberg P (1982) Current Genetics 6: 123–128

    Google Scholar 

  • Delgado JM, Herrara LS (1981) Acta Microbiol. Acad. Sci. Hung. 28: 339–345

    Google Scholar 

  • Dickinson DP, Isenberg I (1982) J. gen. Microbiol. 128: 651–654

    Google Scholar 

  • Dickson RC (1980) Gene 10: 347–356

    Google Scholar 

  • Dobson MJ, Kingsman SM, Kingsman AJ (1981) Gene 16: 133–139

    Google Scholar 

  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acids Res. 10: 2625–2637

    Google Scholar 

  • Eddy AA, Williamson DH (1957) Nature 179: 1252–1253

    Google Scholar 

  • Eddy AA, Williamson DH (1959) Nature 183: 1101–1104

    Google Scholar 

  • Erhart E, Hollenberg CP (1981) Current Genetics 3: 83–89

    Google Scholar 

  • Evans KO, Adenji A, McClary DO (1982) Antonie van Leeuwenhoek 48: 169–182

    Google Scholar 

  • Farkas V (1981) In: Ferenczy L, Kevei F (eds) Training course on fungal protoplast fusion and its applications, Attila Jozsef University, Szeged, Hungary, pp 43–59

    Google Scholar 

  • FehĂ©r Zs, Kiss A, Venetianer P (1983) Nature 302: 266–268

    Google Scholar 

  • Ferenczy L, Kevei F, Zsolt J (1974) Nature 248: 793–794

    Google Scholar 

  • Ferenczy L, Kevei F, Szegedi M (1975) Experientia 31: 1028–1030

    Google Scholar 

  • Ferenczy L, Kevei F, Szegedi M, Franko A, Rojik I (1976) Experientia 32: 1156–1158

    Google Scholar 

  • Ferenczy L, Maráz A (1977) Nature 268: 524–525

    Google Scholar 

  • Fournier P, Provost A, Bourguignon C, Heslot H (1977) Arch. Microbiol. 115: 143–149

    Google Scholar 

  • Fukuda H, Kimura A (1980) FEBS Letters 113: 58–60

    Google Scholar 

  • Gerbaud C, Fournier P, Blanc H, Aigle M, Heslot H, Guerineau M (1979) Gene 5: 233–253

    Google Scholar 

  • Gunge N, Nakatomi Y (1972) Genetics 70: 41–58

    Google Scholar 

  • Gunge N, Tamara A (1978) Japan J. Genet. 53: 41–49

    Google Scholar 

  • Gunge N, Sakaguchi K (1979) Molec. gen. Genet. 170: 243–247

    Google Scholar 

  • Gunge N, Sakaguchi K (1981) J. Bacteriol. 147: 155–160

    Google Scholar 

  • Gunge N, Murata K, Sakaguchi K (1982) J. Bacteriol. 151: 462–464

    Google Scholar 

  • Henikoff S, Tatchel K, Hall BD (1981) Nature 289: 33–37

    Google Scholar 

  • Heritage J, Whittaker PA (1977) Molec. gen. Genet. 156: 93–98

    Google Scholar 

  • Herman A, Roman H (1966) Genetics 53: 727–740

    Google Scholar 

  • Herman AI, Griffin PS (1968) J. Bacteriol. 96: 457–461

    Google Scholar 

  • Herskowitz I, Oshima Y (1981) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces, Cold Spring Harbor Laboratory, CSH, pp 181–209

    Google Scholar 

  • Heslot H, Guerineau M (1979) Gene 5: 233–253

    Google Scholar 

  • Hicks JB, Hinnen A, Fink GR (1979) Cold Spring Harbor Symp. Quant. Biol. 43: 1305–1313

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc. Natl. Acad. Sci. USA 75: 1929–1933

    Google Scholar 

  • Hinnen A, Meyhack B (1982) In: Hofschneider PH, Goebel W (eds) Gene cloning in organisms other than E. coli, Springer Verlag, Berlin Heidelberg, pp 101–117

    Google Scholar 

  • Hirano T, Tacreiter W, Eaves A, Kaplan JG (1968) Cytologia 33: 558–564

    Google Scholar 

  • Hirano T, Takana A (1980) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 105–111

    Google Scholar 

  • Hirano T, Yamaguchi M, Tanaka A, Sekiguchi Y (1982) In: Proceedings of the 10th international congress on electron microscopy, Hamburg, 1982, pp 471–472

    Google Scholar 

  • Hirano T, Yamaguchi M, Tanaka A (1983) In: Poster proceedings of the 6th international protoplast symposium 1983, Birkhaeuser Verlag, Basel (in press)

    Google Scholar 

  • Hitzemann RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Nature 293: 717–722

    Google Scholar 

  • Hollenberg CP (1982) In: HofSchneider PH, Goebel W (eds) Gene cloning in organisms other than E. coli, Springer-Verlag, Berlin Heidelberg, pp 119–144

    Google Scholar 

  • Hyman BC, Cramer JH, Rownd RH (1982) Proc. Natl. Acad. Sci. USA 79: 1578–1582

    Google Scholar 

  • Isaac S, Peberdy JF (1979) In: Peberdy JF (ed) Protoplasts — applications in microbial genetics, University of Nottingham, pp 12–16

    Google Scholar 

  • Kao KN, Michayluk MR (1974) Planta 115: 355–357

    Google Scholar 

  • Kawakami N, Tanaka H, Mondo H, Katamine S, Kawakami H (1980) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 49–54

    Google Scholar 

  • Kielland-Brandt MC, Nilson-Tillgren T, Holmberg S, Peterson JGL, Svennlngsen BA (1979) Carlsberg Res. Cmmun. 44: 77–87

    Google Scholar 

  • Klngsman SM, Dobson MJ, Tuite MF, Roberts NA, Mills JS, Kingsman AJ (1982) In: 11th international conference on yeast genetics and molecular biology (Abstracts), September 13–17, 1982, Montpellier, France, p 109

    Google Scholar 

  • Klinner U, Böttcher F, Samsonova IA (1980) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 113–118

    Google Scholar 

  • Kopecka M, Gabriel M (1978) Arch. Microbiol. 119: 305–311

    Google Scholar 

  • Kuo SC, Yamamoto S (1975) In: Prescott DM (ed) Methods in cell biology, vol XI, Academic Press, London, pp 169–183

    Google Scholar 

  • de Louvencourt L, Wesolowski M, Fukuhara H, Heslot H (1982) In: 11th international conference on yeast genetics and molecular biology (Abstracts) September 13–17, 1982, Montpellier, France, p 48

    Google Scholar 

  • Luckemann G, Sipiczki M, Wolf K (1979) Molec. gen. Genet. 177: 185–187

    Google Scholar 

  • Maráz, A, Kiss M, Ferenczy L (1978) FEMS Microbiol. Letters 3: 319–322

    Google Scholar 

  • Maráz, A, Ferenczy L (1979) In: Peberdy JF (ed) Protoplasts — applications in microbial genetics, University of Nottingham, pp 35–45

    Google Scholar 

  • Maráz, A, Ferenczy L (1980) Current Microbiol. 4: 343–345

    Google Scholar 

  • Maráz, A, Subik J (1981) Molec. gen. Genetic. 181: 131–133

    Google Scholar 

  • Miyanohara A, Toh EA, Nozaki C, Hamada F, Ohtomo N, Matsubara K (1983) Proc. Natl. Acad. Sci. USA 80: 1–5

    Google Scholar 

  • Morgan AJ, Heritage J, Whittaker PA (1977) Microbios Letters 4: 103–107

    Google Scholar 

  • Morgan AJ, Brunner A, Whittaker PA (1980a) Current Genetics 2: 87–93

    Google Scholar 

  • Morgan AJ, Hall JL, Brunner A, Whittaker PA (1980b) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 93–98

    Google Scholar 

  • Morgan A, Sargent A, Nicolaidis A (1982) Microbios Letters 21: 137–142

    Google Scholar 

  • Morgan AJ, Sargent AW, Nicolaidis AA (1983) In: Poster proceedings of the 6th international protoplast symposium 1983, Birkaeuser Verlag, Basel (in press)

    Google Scholar 

  • Mortimer RK, Schild D (1981) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces, Cold Spring Harbor Laboratory, CSH, pp 11–26

    Google Scholar 

  • Murakami S, Livingston DM (1982) Molec. gen. Genet. 185: 506–509

    Google Scholar 

  • Nagata T (1978) Naturwiss 65: 263–264

    Google Scholar 

  • Necas O (1961) Nature 192: 580–581

    Google Scholar 

  • Necas O (1980) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 151–161

    Google Scholar 

  • Panthier JJ, Fournier P, Heslot H, Rambach A (1980) Current Genetics 2: 109–113

    Google Scholar 

  • Peberdy JF (1979) Ann. Rev. Microbiol. 33: 21–39

    Google Scholar 

  • Postgate JR, Cannon FC (1981) In: The manipulation of genetic systems in plant breeding, The Royal Society, London, pp 589–599

    Google Scholar 

  • Provost A, Bourguignon C, Fournier P, Ribet AM, Heslot H (1978) FEMS Microbiol. Letters 3: 309–312

    Google Scholar 

  • Ratzkin B, Carbon J (1977) Proc. Natl. Acad. Sci. USA 74: 487–491

    Google Scholar 

  • Roggenkamp R, Kustermann-Kuhn B, Hollenberg CP (1981) Proc. Natl. Acad. Sci. USA 78: 4466–4470

    Google Scholar 

  • Russell I, Garrison IF, Stewart GG (1973) J. Inst. Brew. 79: 48–54

    Google Scholar 

  • Russell I, Stewart GG (1979) J. Inst. Brew. 85: 95–98

    Google Scholar 

  • Sarachek A, Rhoads DD, Schwartzhoff RH (1980) Arch. Microbiol. 129: 1–8

    Google Scholar 

  • Savchenko GV, Kapultsevich YG (1980) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 125–130

    Google Scholar 

  • Scherer S, Davis RW (1979) Proc. Natl. Acad. Sci. USA 76: 4951–4955

    Google Scholar 

  • Sipiczki M, Ferenczy L (1977a) Molec. gen. Genet. 151: 77–81

    Google Scholar 

  • Sipiczki M, Ferenczy L (1977b) FEMS Microbiol. Letters 2: 203–205

    Google Scholar 

  • Sipiczki M (1979) Current Microbiol. 3: 37–40

    Google Scholar 

  • Snow R (1979) American Journal of Enology and Viticulture 30: 33–37

    Google Scholar 

  • van Solingen P, van der Plaat JB (1977) J. Bacteriol. 130: 946–947

    Google Scholar 

  • Spata L, Weber H (1980) In: Ferenozy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 131–137

    Google Scholar 

  • Spencer JFT, Spencer M (1980) Molec. gen. Genet. 177: 355–358

    Google Scholar 

  • Spencer JFT, Laud P, Spencer DM (1980) Molec. gen. Genet. 178: 651–654

    Google Scholar 

  • Spencer JFT, Spencer D (1981) J Current Genetics 4: 177–180

    Google Scholar 

  • Stahl U (1978) Molec. gen. Genet. 160: 111–113

    Google Scholar 

  • Stephen ER, Nasim A I. 1981) Can. J. Microbiol. 27: 550–553

    Google Scholar 

  • Stewart GG (1981) Can. J. Microbiol. 27: 973–990

    Google Scholar 

  • Stinchcomb DT, Struhl K, Davis RW (1979) Nature 282: 39–43

    Google Scholar 

  • Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW (1980) Proc. Natl. Acad. Sci. USA 77: 4559–4563

    Google Scholar 

  • Stinchcomb DT, Mann C, Davis RW (1982) J. Mol. Biol. 158: 157–179

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc. Natl. Acad. Sci. USA 76: 1035–1039

    Google Scholar 

  • Svoboda A (1966) Experimental Cell Res. 44: 640–642

    Google Scholar 

  • Svoboda A, Necas A (1966) Nature 210: 845

    Google Scholar 

  • Svoboda A (1976) Arch. Microbiol. 110: 313–318

    Google Scholar 

  • Svoboda A (1980) In: Ferenczy L, Farkas GL (eds) Advances in protoplast research, Proceedings of the 5th international protoplast symposium 1979, Szeged, Hungary, Pergamon Press, Oxford, pp 119–124

    Google Scholar 

  • Svoboda A (1981) In: Ferenczy L, Kevei F (eds) Training course on fungal protoplast fusion and its applications, Attila Jozsef University, Szeged, Hungary, pp 65–67

    Google Scholar 

  • Takano I, Arima K (1979) Genetics 91: 245–254

    Google Scholar 

  • Thuriaux P, Sipiczki M, Fantes PA (1980) J. gen. Microbiol. 116: 525–528

    Google Scholar 

  • Toh E A, Guerry-Kopecko P, Wickner RB (1980) J. Bacteriol. 141: 413–416

    Google Scholar 

  • Tudzynski P, Esser K (1982) Current Genetics 6: 153–158

    Google Scholar 

  • Tuppy H, Wildner G (1965) Biochem. biophys. Res. Commun. 20: 733–738

    Google Scholar 

  • Valiin C, Ferenczy L (1978) Acta Microbiol. Acad. Sci. Hung. 25: 209–212

    Google Scholar 

  • Vidoli R, Yamazaki H, Nasim A, Viliky IA (1982) Biotechnology Letters 4: 781–784

    Google Scholar 

  • Wallin A, Glimelius K, Eriksson T (1974) Z. Pflanzenphysiol. 74: 64–80

    Google Scholar 

  • Weber H, Förster W, Jacob HE, Berg H (1981a) Zeitschrift fĂĽr Allgemeine Mikrobiologie 21: 555–562

    Google Scholar 

  • Weber H, Förster W, Berg H, Jacob HE (1981b) Current Genetics 4: 165–166

    Google Scholar 

  • Whittaker PA, Leach SM (1978) FEMS Microbiol. Letters 4: 31–34

    Google Scholar 

  • Whittaker PA (1979) Subcellular Biochem. 6: 175–232

    Google Scholar 

  • Williamson DH, Fennell DJ (1975) In: Prescott DM (ed) Methods in cell biology, vol XII, Academic Press, London, pp 335–351

    Google Scholar 

  • Wilson JJ, Khachatourians GG, Ingledew WM (1982) Molec. gen. Genet. 186: 95–100

    Google Scholar 

  • Yamamoto M, Fukui S (1977) Agri. Biol. Chem. 41: 1829–1830

    Google Scholar 

  • Yamashita K, Fukuda H, Murata K, Kimura A (1981) FEBS Letters 132: 305–307

    Google Scholar 

  • Zimmerman U (1982) Biochimica et Biophysica Acta 694: 227–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Basel AG

About this chapter

Cite this chapter

Morgan, A.J. (1983). Yeast Strain Improvement by Protoplast Fusion and Transformation. In: Potrykus, I., Harms, C.T., Hinnen, A., Hütter, R., King, P.J., Shillito, R.D. (eds) Protoplasts 1983. EXS 46: Experientia Supplementum, vol 46. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6776-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6776-4_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6777-1

  • Online ISBN: 978-3-0348-6776-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics