Improved Absolute Stability of Predictor-Corrector Methods for Retarded Differential Equations

  • P. J. van der Houwen
  • B. P. Sommeijer
Part of the International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 62)


The absolute stability of predictor-corrector type methods is investigated for retarded differential equations. The stability test equation is of the form dy(t)/dt = ω1y(t) + ω2y(t−ω) where ω1, ω2 and ω are constants (ω>0). By generalizing the conventional predictor-corrector methods it is possible to improve the stability region in the (ω1Δt, ω2Δt) — plane considerably. In particular, methods based on extrapolation-predictors and backward differentiation- correctors are studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arndt, H.: The influence of interpolation on the global error in retarded differential equations, This proceedings.Google Scholar
  2. [2]
    Barwell, V.K.: Special stability problems for functional differential equations, BIT 15 (1975), 130–135.CrossRefGoogle Scholar
  3. [3]
    Bellman, R. and K.L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.Google Scholar
  4. [4]
    Cryer, C.W.: Highly stable multistep methods for retarded differential equations, SIAM J. Numer. Anal. 11 (1974), 788–797.CrossRefGoogle Scholar
  5. [5]
    Gee, M. de: Solutions of functional differential equations, Thesis, Utrecht, 1982.Google Scholar
  6. [6]
    Houwen, P.J. van der and B.P. Sommeijer: On the stability of predictor-corrector methods for delay equations (in preparation).Google Scholar
  7. [7]
    — and —: Predictor-corrector methods with improved absolute stability regions, NW report (1982), Mathematisch Centrum, Amsterdam.Google Scholar
  8. [8]
    Oppelstrup, J.: The RKFHB4 method for delay-differential equations, Numer. Treat. Differ. Equat., Proc. Conf., Lect. Notes Math. 631 (1978), 133–146.CrossRefGoogle Scholar
  9. [9]
    Stetter, H.J.: Improved absolute stability of predictor-corrector schemes, Computing 3 (1968), 286–296.CrossRefGoogle Scholar
  10. [10]
    Tavernini, L.: Linear multistep methods for the numerical solution of Vol terra functional differential equations, J. Applicable Anal. 3 (1973), 169–185.CrossRefGoogle Scholar
  11. [11]
    Wiederholt, L.F.: Stability of multistep methods for delay differential equations, Math. of Comp. 30 (1976), 283–290.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1983

Authors and Affiliations

  • P. J. van der Houwen
    • 1
  • B. P. Sommeijer
    • 1
  1. 1.Stichting Mathematisch CentrumAmsterdamThe Netherlands

Personalised recommendations