Consider the retarded initial value problem
$$\begin{gathered} y'(x) = f(x,y(x),y(x - \tau ))\quad for\quad x\underline > {x_o}, \hfill \\ y(x) = \psi (x)\quad \quad \quad \quad \quad \quad for\quad x\underline > {x_o}, \hfill \\ \end{gathered} $$
where the retardation τ may be constant, variable: τ = τ(x), or state dependent: τ = τ(x,y(x)), and τ ≥ o. If f, ψ and τ are continuous then according to DRIVER [2] there exists a solution of problem (1) in some interval [xo,b].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arndt, H. Zur Schrittweitensteuerung bei retardierten Anfangswertproblemen, to appear in ZAMM 63, Heft 4/5.Google Scholar
  2. 2.
    Driver, R.D. (1963) Existence Theory for a Delay-Differential System, Contributions to Differential Equations 1, 317–336.Google Scholar
  3. 3.
    Hale, J. (1977) Theory of Functional Differential Equations, Springer Verlag.Google Scholar
  4. 4.
    van der Houwen, P.J./Sommeijer, B.P. Improved Absolute Stability of Predictor-Corrector Methods for Retarded Differential Equations, these proceedings.Google Scholar
  5. 5.
    Oberle, H.J./ Pesch, H.J. (1981) Numerical Treatment of Delay Differential Equations by Hermite Interpolation, Numer.Math. 37 235–255.CrossRefGoogle Scholar
  6. 6.
    Oppelstrup, J. (1976) The RKFHB4 Method for Delay Differential Equations, Springer Verlag, Lecture Notes in Mathematics 631, 133–146.Google Scholar
  7. 7.
    Shampine, L.F./ Watts, H.A. (1976) Global Error Estimation for Ordinary Differential Equations, ACM Trans. Math. Software 2, 172–186.CrossRefGoogle Scholar
  8. 8.
    Stetter, H.J. (1965) Numerische Lösung von Differentialgleichungen mit nacheilendem Argument, ZAMM 45, T79–80.Google Scholar
  9. 9.
    Stetter, H.J. (1979) Global Error Estimation in Adams PC-Codes, ACM Trans. Math. Software 5, 415–430.CrossRefGoogle Scholar
  10. 10.
    Tavernini, L. (1973) Linear Multistep Methods for the Numerical Solution of Volterra Differential Equations, Applicable Analysis 3, 169–185.CrossRefGoogle Scholar
  11. 11.
    Tavernini, L. (1978) The Approximate Solution of Volterra Differential Systems with State-Dependent Time Lags, SIAM J. Numer. Anal. 15, 1039–1052.CrossRefGoogle Scholar
  12. 12.
    Verwer, J.G. Estimation of the Global Error in Runge-Kutta Methods, these proceedings.Google Scholar

Copyright information

© Springer Basel AG 1983

Authors and Affiliations

  • Herbert Arndt
    • 1
  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations