The classical Runge-Kutta method is combined with discrete Newton methods and iterated defect corrections to obtain high order methods based on the asymptotic expansion of the discretization error. A simple step-size strategy and numerical results are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Böhmer, K.: Discrete Newton methods and iterated defect corrections, I General theory, II Proofs and applications to initial and boundary value problems, submitted to Numer.Math.Google Scholar
  2. [2]
    Collatz, L: The numerical treatment of differential equations, Berlin, Springer Verlag 1960CrossRefGoogle Scholar
  3. [3]
    Frank, R.: Schätzungen des globalen Diskretisierungsfehlers bei Runge-Kutta-Methoden, ISNM 27, 45–70 (1975).Google Scholar
  4. [4]
    Fritz, B.: Defekt-Korrekturen mit numerischen Erfahrungen für Runge-Kutta-Methoden, Masters Thesis, Universität Karlsruhe 1977.Google Scholar
  5. [5]
    Stetter, H.J.: Analysis of discretization methods for ordinary differential equations, Berlin-Heidelberg-New York, Springer Verlag, 1973CrossRefGoogle Scholar
  6. [6]
    Stetter, H.J.: Economical global error estimation, in “Stiff differential systems”, R.A. Willoughby, ed., 245–258, New York — London, Plenum Press, 1974.CrossRefGoogle Scholar
  7. [7]
    Stoer, J., Bulirsch, R.: Numerische Mathematik II, Springer-Verlag, Berlin, 1963Google Scholar
  8. [8]
    Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations, Numer.Math. 27, 21–40 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • Klaus Böhmer
    • 1
  • Hans-Jürgen Fleischmann
    • 1
  1. 1.Institut für Praktische MathematikUniversität KarlsruheGermany

Personalised recommendations