Advertisement

Abstract

We construct a rational scheme interpolating a Taylor field of order 1 (or a function and its first partial derivatives) given on the edge of a Triangle T with accute angles. We don’t use blending functions of Barnhill-Birkhoff and Gordon, but another way, namely: smooth partitions of unity, Taylor formula and Whitney’s extension theorem. We obtain bounds for the interpolating error which are of the same order as polynomial interpolation at the three vertices of T.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Barnhill, R.E., Birkhoff, G. Gordon, W.J.: Smooth interpolation in triangles. J. Approx. Theory 8 (1973), 114–128.CrossRefGoogle Scholar
  2. [2]
    Bell, K.: A refined triangular plate bending element. Int. J. Num. Math. Eng. 1. (1969), 101–122.CrossRefGoogle Scholar
  3. [3]
    Bernadou, M.: Sur l’analyse numérique du modèle linéaire de coques minces de W.T. Koiter. Thèse. Université de Paris VI (Juin 1978).Google Scholar
  4. [4]
    Bohmer, K., Coman, Gh.: Blending interpolation schemes on triangles with error bounds. in: Constructive Theory of Functions of Several Variables. Oberwolfach 1976. Lectures Note’s in Mathematics 571. Springer Verlag (Berlin), 1977.Google Scholar
  5. [5]
    Ciarlet, P.G.: The finite Element Method for Elliptic Problems. North Holland, 1978.Google Scholar
  6. [6]
    Ciarlet, P.G., Wagschal, C.: Multipoint Taylor formulas and applications to the finite element method. Numer. Math 17 (1971), 84–100.CrossRefGoogle Scholar
  7. [7]
    Coatmelec, Chr.: Approximation et interpolation de fonctions différentiables de plusieurs variables. Ann. Sc. Ecole Normale Sup. 3e série, T. 83 (1966).Google Scholar
  8. [8]
    Glaeser, G.: Etude de quelques algèbres Tayloriennes. J. Anal. Math T6, (1958).Google Scholar
  9. [9]
    Glaeser, G.: Géométrie des Distributions à support fini. Séminaire Goulaouic. Schwartz, 1970–1971 — Ecole Polytechnique Paris.Google Scholar
  10. [10]
    Le Mehaute, A.: Quelques méthodes explicites de prolongements de fonctions numériques de plusieurs variables. Thèse 3e Cycle, Univ. Rennes (Déc. 1976).Google Scholar
  11. [11]
    Meinguet, J.P.: Realistic Estimates for generic constants in multivariate pointwise approximation. in: Topics in Numerical Analysis. Dublin 1974. J. JH Miller. Ed. Academic Press (1975).Google Scholar
  12. [12]
    Tougeron, J.C.: Idéaux de fonctions différentiables. Springer Verlag (1972).Google Scholar
  13. [13]
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., Vol. 36, N° 1. (Jan. 1934).Google Scholar
  14. [l4]
    Whitney, H.: Functions differentiables on the boundaries of regions. Ann. of Math. 35 (1934), 482–485.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • Alain Le Mehaute
    • 1
  1. 1.Institut National des Sciences AppliquéesRennes CedexFrance

Personalised recommendations