The Pharmacological Basis of the Therapeutic Effect of (—)-Deprenyl in Age-Related Neurological Diseases

  • J. Knoll
Part of the Milestones in Drug Therapy book series (MDT)


In human, striatal dopamine content and number of nigrostriatal neurons are known to decline rapidly beyond the age of 45 years [1]. According to our present knowledge, the nigrostriatal dopaminergic neurons are the most rapidly aging neurons in the human brain. The dopamine content of the human caudate nucleus decreases enormously, by 13% per decade, over age 45. We know that symptoms of Parkinson’s disease (PD) appear if the dopamine content of the caudate sinks below 30% of the normal level. Thus, the normal aging of the system is slow enough so that the appearance of parkinsonian symptoms is not evident within the average lifespan. This is true for 99.9% of the human population. In 0.1%, however, the striatal dopaminergic system deteriorates rapidly. This small percentage of the population (see Figure 1) crosses the critical threshold and manifests the classical symptoms described by James Parkinson in 1817 in his famous book “Essay on the Shaking Palsy”. Parkinson’s disease (PD) may be regarded as a premature, rapid aging (of unknown origin) of the striatal dopaminergic machinery.


  1. [1]
    Birkmayer W., Riederer P. Parkinson’s disease: Biochemistry, clinical pathology and treatment. Wien: Springer Verlag, 1983: 194.Google Scholar
  2. [2]
    Martilla R. Epidemiological, clinical and virus-serological studies of Parkinson’s disease [thesis]. Reports from the Dept. of Neurology. Univ. of Turku, Finland 1974.Google Scholar
  3. [3]
    Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Molec. Pharmacol. 1978; 14: 333–343.Google Scholar
  4. [4]
    Mann DMA, Yates PO, Barton CM. Neuromelanin and RNA in cells of substantia nigra. J. Neuropathol. Exp. Neurol. 1977; 36: 379–83.CrossRefGoogle Scholar
  5. [5]
    Graham DG. On the origin and significance of neuromelanin. Arch. Pathol. Lab. Med. 1979; 103: 359–62.Google Scholar
  6. [6]
    Munnel JF, Getty R. Rate of accumulation of cardiac lipofuscin in the aging canine. J. Gerontol. 1968; 23: 145–58.CrossRefGoogle Scholar
  7. [7]
    Sohal RS, Donato H. Effect of experimental prolongation of life span on lipofuscin content and lyposomal enzyme activity in the brain of the housefly, Musca domestica. J. Gerontol. 1979; 34: 489–96.CrossRefGoogle Scholar
  8. [8]
    Fridovich I. Superoxide dismutase. Advanc. Enzymol. 1974; 41: 35–97.Google Scholar
  9. [9]
    McCord JA, Fridovich I. Superoxide dismutase. An enzymic action of erythrocuprein (heamocuprein). J. Biol. Chem. 1969; 224: 6049–55.Google Scholar
  10. [10]
    Knoll J, Magyar K. Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv. Biochem. Psychopharmacol. 1972; 5: 393–08.Google Scholar
  11. [11]
    Knoll J. The possible mechanism of action of (—)-deprenyl in Parkinson’s disease. J. Neural Transm. 1978; 43: 177–98.CrossRefGoogle Scholar
  12. [12]
    Cohen G, Pasik P, Cohen B, Leist A, Mytilineou G, Jahr MD. Pargyline and (-)- deprenyl prevent the neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur. J. Pharmacol. 1984; 106: 209–10.CrossRefGoogle Scholar
  13. [13]
    Knoll J. The pharmacology of selective MAO inhibitors. In: Youdim MBH, Paykel ES, editors. Monoamine oxidase inhibitors. The state of the art. London: Wiley J, 1981: 45–61.Google Scholar
  14. [14]
    Knoll J. Selective inhibition of B-type monoamine oxidase in the brain: A drug strategy to improve the quality of life in senescence. In: Keverling-Buismann JA, editor. Strategy in drug research. Amsterdam: Elsevier, 1982: 107–35.Google Scholar
  15. [15]
    Knoll J. (—)-Deprenyl (selegiline): the history of its development and pharmacological action. Acta Neurol. Scand. Suppl. 1983; 95: 57–80.CrossRefGoogle Scholar
  16. [16]
    Knoll J. The facilitation of dopaminergic activity in the aged brain by (—)-deprenyl. A proposal for a strategy to improve the quality of life in senescence. Mech. Ageing. Dev. 1985; 30: 109–22.CrossRefGoogle Scholar
  17. [17]
    Knoll J. Striatal dopamine, aging and (—) deprenyl. In: Borsy J, Kerecsen L, György L, editors. Dopamine, ageing and diseases. Budapest: Akadémiai Kiadó, New York: Perga- mon Press 1986: 7–26.Google Scholar
  18. [18]
    Harsing LG Jr, Magyar K, Tekes K, Vizi ES, Knoll J. Inhibition by (—)-deprenyl of dopamine uptake in rat striatum: a possible correlation between dopamine uptake and acetylcholine release inhibition. Pol. J. Pharmacol. Pharm. 1979; 31: 297–07.Google Scholar
  19. [19]
    Knoll J. Analysis of the pharmacological effects of selective monoamine oxidase inhibitors. In: Wolstenholme GES, Knight J, editors. Monoamine oxidase and its inhibition. Ciba foundation Symposium 39 (new series). Amsterdam: Elsevier 1976: 135–61.Google Scholar
  20. [20]
    Knoll J, Vizi ES, Somogyi G. Phenylisopropylmethylpropylamine (E-250), a monoamine oxidase inhibitor antagonizing the effects of tyramine. Arzneimittel-Forschung 1968; 18: 109–12.Google Scholar
  21. [21]
    Knoll J. On the dual nature of monoamine oxidase. Horizons Biochem. Biophys. 1978; 5: 37–64.Google Scholar
  22. [22]
    Knoll J. The pharmacology of selective irreversible monoamine oxidase inhibitors. In: Seiler N, Jung M, Koch-Weser J, editors. Enzyme-activated irreversible inhibitors. Amsterdam: Elsevier 1978: 253–69.Google Scholar
  23. [23]
    Knoll J. Monoamine oxidase inhibitors: chemistry and pharmacology. In: Sandler M, editor. Enzyme inhibitors as drugs. London: McMillan Press Ltd 1980: 151–71.Google Scholar
  24. [24]
    Blackwell B. Hypertensive crisis due to monoamine oxidase inhibitors. Lancet 1963; ii: 849–51.CrossRefGoogle Scholar
  25. [25]
    Harsing LG Jr, Tekes K, Magyar K, Vizi ES, Knoll J. Deprenyl inhibits dopamine uptake in the rat striatum in vivo. In: Magyar K, editor. Monoamine oxidase and their selective inhibition. Budapest: Akadémiai Kiadó, New York: Pergamon Press 1979: 45–56.Google Scholar
  26. [26]
    Elsworth JD, Glover V, Reynolds GP, Sandler M, Lees AJ, Phuapradit P, et al. (—)-Deprenyl administration in man: A selective monoamine oxidase B inhibitor without the “cheese effect”. Psychopharmacology 1978; 57: 33–78.CrossRefGoogle Scholar
  27. [27]
    Sandler M, Glover V, Ashford A, Stern G. Absence of “cheese effect” during (—)- deprenyl therapy: some recent studies. J Neurol. Transm. 1978; 43: 209–14.CrossRefGoogle Scholar
  28. [28]
    Knoll J. Critical role of MAO inhibition of Parkinson’s disease. Advances in Neurology 1986; 45: 107–10.Google Scholar
  29. [29]
    Knoll J. The pharmacology of (-)-deprenyl. J. Neurol. Transm. Suppl. 1986; 22: 75–89.Google Scholar
  30. [30]
    Abdorubo A, Knoll J. The effect of various MAO-B inhibitors on rabbit arterial strip response to tyramine. Pol. J. Pharmacol. Pharm. 1988; 40: 673–83.Google Scholar
  31. [31]
    Abdorubo A. The effect of various monoamine oxidase (MAO) inhibitors on the response of blood pressure of rats and cats to tyramine. Acta Physiol. Hung. 1990; 75: 321–346.Google Scholar
  32. [32]
    Knoll J. R-(—)-Deprenyl (Selegiline, MoverganR) facilitates the activity of the nigrostri- atal dopaminergic neuron. J. Neural. Transm., Suppl. 1987; 25: 45–66.Google Scholar
  33. [33]
    Knoll J. The striatal dopamine dependency of life span in male rats. Longevity study with (—)-deprenyl. Mech. Ageing Dev. 1988; 46: 237–62.CrossRefGoogle Scholar
  34. [34]
    Knoll J. The pharmacology of selegiline ((—)-deprenyl). New aspects. Acta Neurol. Scand. 1989; 126: 83–91.CrossRefGoogle Scholar
  35. [35]
    Knoll J. Nigrostriatal dopaminergic activity, (—)-deprenyl treatment, and longevity. Adv. Neurology 1990; 53: 425–9.Google Scholar
  36. [36]
    Carrillo MC, Kanai S, Nokubo M, Kitani K. (—)-Deprenyl induced activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci. 1991; 48: 517–21.CrossRefGoogle Scholar
  37. [37]
    Misra HP, Fridovich J. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972; 247: 3170–75.Google Scholar
  38. [38]
    Beers RF Jr, Sizer IW. Spectrophotometry for measuring the breakdown of hydrogen peroxidase by catalase. J. Biol. Chem. 1952; 195: 133–40.Google Scholar
  39. [39]
    Knoll J. Medikamentöse Strategie zur Verbesserung der Lebensqualität in der Seneszenz. Wiener Med. Wschr, 1986; 136: [Suppl.] 3–18.Google Scholar
  40. [40]
    Knoll J. Role of B-type monoamine oxidase inhibition in the treatment of Parkinson’s disease. An uptake. In: Shah NS, Donald AG, editors. Movement disorders. New York: Plenum Press 1986: 53–81.CrossRefGoogle Scholar
  41. [41]
    Kerecsen L, Kalász H, Knoll J. (—)-Deprenyl enhanced dopamine release from isolated striatal preparations of the rat following chronic treatment. In: Borsy J, Kerecsen L, György L, editors. Dopamine, ageing and diseases. Budapest: Akadémiai Kiadó, New York: Pergamon Press 1986: 27–33.Google Scholar
  42. [42]
    Zsilla G, Knoll J. The action of (—)-deprenyl on monoamine turnover rate in rat brain. Adv. Biochem. Psychopharmacol. 1982; 31: 211–17.Google Scholar
  43. [43]
    Zsilla G, Földi P, Held Gy, Székely AM, Knoll J. The effect of repeated doses of (—)-deprenyl on the dynamics of monoaminergic transmission. Comparison with clorgy- line. Pol. J. Pharmacol. Pharm. 1986; 38: 57–67.CrossRefGoogle Scholar
  44. [44]
    Knoll J, Yen TT, Dalló J. Long-lasting, true aphrodisiac effect of (—)-deprenyl in sexually sluggish old male rats. Mod. Probl. Pharmacopsychiat. 1983; 19: 135–53.Google Scholar
  45. [45]
    Knoll J. Some clinical implications of MAO-B inhibition. In: Yasuhara H, Parvez SH, Sandler M, Oguchi K, Nagatsu T, editors. Monoamine Oxidase: Basic and clinical aspects. Holland: VPS Press. In press.Google Scholar
  46. [46]
    Tariot PN, Cohen RM, Sunderland T. Newhouse PA, Yount D, Mellow AM, et at. l-Deprenyl in Alzheimer’s disease. Arch. Gen. Psychiatry 1987; 44: 427–433.CrossRefGoogle Scholar
  47. [47]
    Tariot PN, Sunderland T, Weingartner H, Murphy DL, Welkovitz JA, Thompson K, et al. Cognitive effect of l-deprenyl in Alzheimer disease. Psychopharmacology 1987; 91: 489–95.CrossRefGoogle Scholar
  48. [48]
    Tariot PN, Sunderland T, Cohen RM, Newhouse PA, Mueller EA, Murphy DL. Tranylcypromine compared with l-deprenyl in Alzheimer disease. J. Clin. Pschopharma- col. 1988; 8: 23–7.Google Scholar
  49. [49]
    Martini E, Pataky J, Szilágyi K, Venter V. Brief information on an early phase-II study with (—)-deprenyl in demented patients. Pharmacopsychiatry 1987; 20: 256–7.CrossRefGoogle Scholar
  50. [50]
    Piccinin GL, Finali GC, Piccirilli M. Neuropsychological effects of l-deprenyl in Alzheimer’s type dementia. Clin. Neuropharmacol. 1990; 13: 147–63.CrossRefGoogle Scholar
  51. [51]
    Mangoni A, Grassi MP, Frattola L, Piolti R, Bassi S, Motta A, et al. Effects of MAO-B inhibitor in the treatment of Alzheimer disease. Eur. Neurol. 1991; 31: 100–7.CrossRefGoogle Scholar
  52. [52]
    Goad DL, Davis CM, Leim P, Fuselier CC, McCormack JR, Olsen KM. The use of selegiline in Alzheimer’s patients with behavior problems. J. Clin. Psychiatry 1991; 53: 342–45.Google Scholar
  53. [53]
    Milgram NW, Racine RJ, Nellis P, Mendoca A, Ivy G. Maintenance on l-deprenyl prolongs life in aged male rats. Life Sci. 1990; 47: 415–20.CrossRefGoogle Scholar
  54. [54]
    Birkmayer W, Knoll J, Riederer P, Youdim MBH. (—)-Deprenyl leads to prolongation of L-dopa efficacy in Parkinson’s disease. Mod. Probl. Pharmacopsychiatry 1983; 19: 170–6.Google Scholar
  55. [55]
    Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J. Increased life expectancy resulting from addition of l-deprenyl to Madopar® treatment in Parkinson’s disease: a long-term study. J. Neural Transm. 1985; 64: 133–137.Google Scholar
  56. [56]
    Tetrud JW, Langston JW. The effect of (—)-deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245: 519–22.CrossRefGoogle Scholar
  57. [57]
    Parkinson Study Group. Effect of (—)-deprenyl in the progression of disability in early Parkinson’s disease. New England Journal of Medicine 1989; 321: 1364–71.CrossRefGoogle Scholar
  58. [58]
    Tóth V, Kümmert M, Sugar J, Knoll J. A procedure for measuring neuromelanin in neurocytes by a TV-image analyser. Mech. Ageing Dev. 1992; 63: 215–221.CrossRefGoogle Scholar
  59. [59]
    Knoll J, Tóth V, Kümmert M, Sugar J. (—)-Deprenyl and (—)-parafluorodeprenyl- treatment prevents age-related pigment changes in substantia nigra. A TV-image analysis of neuromelanin. Mech. Ageing Dev. 1992; 63: 157–163.CrossRefGoogle Scholar
  60. [60]
    Rinne JO, Röyttä M, Paljärvi L, Rummukainen J, Rinne UK. Selegiline (deprenyl) treatment and death of nigral neurons in Parkinson’s disease. Neurology 1991; 41: 859–61.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1993

Authors and Affiliations

  • J. Knoll

There are no affiliations available

Personalised recommendations