Skip to main content

Pharmacokinetics and Clinical Pharmacology of Selegiline

  • Chapter

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Selegiline (formerly called l-(—)-deprenyl) is a selective, irreversible inhibitor of monoamine oxidase (MAO) type B. In the human brain dopamine is metabolized via MAO-B [1]. By inhibiting this enzyme the dopamine concentration in the brain is increased [2]. Selegiline has also been shown to inhibit the uptake of dopamine and noradrenaline [3]. Due to these properties, selegiline is widely used in the treatment of Parkinson’s disease (PD) as either an adjuvant to levodopa therapy or alone in the early phase of the disease [4–6]. Preliminary results have suggested that selegiline may also alleviate the symptoms of Alzheimer’s disease [7, 8]. High dosages (up to 50 mg daily) have been successfully used in the treatment of depression [9]. In the following the pharmacokinetics, metabolism, and interactions of selegiline will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glover V, Eisworth JD, Sandler M. Dopamine oxidation and its inhibition by (—)- deprenyl in man. J Neural Transm 1980; [Supplement] 16: 163–172.

    Google Scholar 

  2. Riederer P, Youdim M. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated 5 with l-deprenyl. J Neurochemistry 1986; 46: 1359–1365.

    Article  Google Scholar 

  3. Knoll J. The pharmacology of selegiline ((—)-deprenyl). New aspects. Acta Neurol Scand 1989; 126: 83–91.

    Article  Google Scholar 

  4. The Parkinson study group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 1364–1371.

    Article  Google Scholar 

  5. Heinonen EH, Rinne UK. Selegiline in the treatment of Parkinson’s disease. Acta Neurol Scand 1989; 126: 103–111.

    Google Scholar 

  6. Myllylä W, Sotaniemi KA, Vuorinen JA, Heinonen EH. Selegiline as primary treatment in de novo parkinsonian patients. Neurology 1992; 42: 339–343.

    Article  Google Scholar 

  7. Tariot PN, Cohen RM, Sunderland T et al. l-Deprenyl in Alzheimer’s disease. Preliminary evidence for behavioral change with monoamine oxidase B inhibition. Arch Gen Psychiatry 1987; 44: 427–433.

    Article  Google Scholar 

  8. Mangoni A, Grassi MP, Frattola L et al. Effects of MAO-B inhibitor in the treatment of Alzheimer disease. Eur Neurol 1991; 31: 100–107.

    Article  Google Scholar 

  9. Mann JJ, Aarons SF, Wilner PJ et al. A controlled study of the antidepressant efficacy and side effects of (—)-deprenyl. Arch Gen Psychiatry 1989; 46: 45–50.

    Article  Google Scholar 

  10. Magyar K, Tóthfalusi L. Pharmacokinetic aspects of deprenyl effects. Pol J Pharmacol Pharm 1984; 36: 373–384.

    Article  Google Scholar 

  11. Benakis A. Pharmacokinetic study in man of 14C-Jumex. [A study report.] Turku, Finland: Orion Corporation Farmos, 1981.

    Google Scholar 

  12. MacGregor RR, Halldin C, Fowler JS et al. Selective, irreversible in vivo binding of [nC]clorgyline and [nC]-l-deprenyl in mice: potential for measurement of functional monoamine oxidase activity in brain using positron emission tomography. Biochem Pharmac 1985; 34(17): 3207–3210.

    Article  Google Scholar 

  13. Szökö É, Kalász H, Kerecsen L, Magyar K. Binding of (—)-deprenyl to serum proteins. Pol J Pharmacol Pharm 1984; 36: 413–421.

    Google Scholar 

  14. Kalász H, Kerecsen L, Knoll J, Pucsok J. Chromatographic studies on the binding, action and metabolism of (—)-deprenyl. J Chromatogr 1990; 499: 589–599.

    Article  Google Scholar 

  15. Fowler JS, MacGregor RR, Wolf AP et al. Mapping human brain monoamine oxidase A and B with nC-labeled suicide inactivators and PET. Science 1987; 235: 481–485.

    Article  Google Scholar 

  16. Oreland L, Arai Y, Stenström A. The effect of deprenyl (selegiline) on intra- and extraneuronal dopamine oxidation. Acta Neurol Scand 1983; [Supplement] 95: 81–85.

    Article  Google Scholar 

  17. Jossan SS, d’Argy R, Gillberg PG et al. Localization of monoamine oxidase B in human brain by autoradiography use of 11C-labelled l-deprenyl. J Neural Transm 1989; 77: 55–64.

    Article  Google Scholar 

  18. Jossan SS, Gillberg PG, d’Argy R et al. Quantitative localization of human brain monoamine oxidase B by large section autoradiography using l-[3H] deprenyl. Brain Res 1991; 547: 69–76.

    Article  Google Scholar 

  19. Youdim MBH. The active centers of monoamine oxidase types “A” and “B”: binding with (14C)-clorgyline and (l4C)-deprenyl. J Neural Transm 1978; 43: 199–208.

    Article  Google Scholar 

  20. Riederer P, Reynolds GP. Deprenyl is a selective inhibitor of brain MAO-B in the long-term treatment of Parkinson’s disease. Br J Clin Pharmac 1980; 9: 98–99.

    Article  Google Scholar 

  21. Sunderland T, Mueller A, Cohen RM, Jimerson DC, Pickar D, Murphy DL. Tyramine pressor sensitivity changes during deprenyl treatment. Psychopharmacology 1985; 86: 432–437.

    Article  Google Scholar 

  22. Elsworth JD, Glover V, Reynolds G et al. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the ‘cheese effect’. Psychopharmacology 1978; 57: 33–38.

    Article  Google Scholar 

  23. Blackwell B. Hypertensive crises due to monoamine-oxidase inhibitors. Lancet 1963; 2: 849–850.

    Article  Google Scholar 

  24. Riederer P, Youdim MBH, Rausch WD, Birkmayer W, Jellinger K, Seemann D. On the Mode of Action of l-Deprenyl in the Human Central Nervous System. J Neural Transm 1978; 43: 217–226.

    Article  Google Scholar 

  25. Lee DH, Mendoza M, Dvorozniak MT, Chung E, van Woert MH, Yahr MD. Platelet monoamine oxidase in Parkinson patients: effect of l-deprenyl therapy. J Neural Transm 1989; 1: 189–194.

    Article  Google Scholar 

  26. Simpson GM, Frederickson E, Palmer R, Pi E, Sloane RB, White K. Platelet monoamine oxidase inhibition by deprenyl and tranylcypromine: implications for clinical use. Biol Psychiatry 1985; 20: 680–684.

    Article  Google Scholar 

  27. Birkmayer W, Riederer P, Ambrozi L, Youdim MBH. Implications of combined treatment with ‘Madopar’ and l-deprenyl J in Parkinson’s disease. Lancet 1977; i: 439–443.

    Article  Google Scholar 

  28. Oreland L, Johansson F, Ekstedt J. Dose regimen of deprenyl (selegiline) and platelet MAO activities. Acta Neurol Scand 1983; [Supplement] 95: 87–89.

    Article  Google Scholar 

  29. Teychenne PF, Parker S. Double-blind, crossover, placebo controlled trial of selegiline in Parkinson’s disease — an interim analysis. Acta Neurol Scand 1989; 126: 119–125.

    Article  Google Scholar 

  30. Feiner AE, Waldmeier PC. Cumulative effects of irreversible MAO inhibitors in vivo. Biochem Pharmac 1979; 28: 995–1002.

    Article  Google Scholar 

  31. Turkish S, Yu PH, Greenshaw AJ. Monoamine oxidase-B inhibition: a comparison of invivo and ex vivo measures of reversible effects. J Neural Transm 1988; 74: 141–148.

    Article  Google Scholar 

  32. Timar J. Recovery of MAO-B enzyme activity after (—)deprenyl (selegiline) pretreatment, measured in vivo. Acta Physiol Hung 1989; 74(3–4): 259–266.

    Google Scholar 

  33. Oreland L, Jossan SS, Hartvig P, Aquilonius SM, Langström B. Turnover of monoamine oxidase B (MAO-B) in pig brain by positron emission tomography using 11C-l-deprenyl. J Neural Transm 1990; [Supplement] 32: 55–59.

    Google Scholar 

  34. Arnett CD, Fowler JS, MacGregor RR et al. Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using l-[11C]deprenyl. J Neurochem 1987; 49: 522–527.

    Article  Google Scholar 

  35. Egashira T, Kamijo K. Synthetic rates of monoamine oxidase in rat liver after clorgyline or deprenyl administration. Jpn J Pharmacol 1979; 29: 677–680.

    Article  Google Scholar 

  36. McQuade PS. Analysis and the effects of some drugs on the metabolism of phenylethyl- amine and phenylacetic acid. Prog Neuropsychopharmacol Biol Psychiatry 1984; 8: 607–614.

    Article  Google Scholar 

  37. Reynolds GP, Riederer P, Sandler M, Jellinger K, Seemann D. Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (—)deprenyl administration. J Neural Transm 1978; 43: 271–277.

    Article  Google Scholar 

  38. Ono H, Ito H, Fukuda H. 2-Phenylethylamine and methamphetamine enhance the spinal monosynaptic reflex by releasing noradrenaline from the terminals of descending fibers. Jpn J Pharmacol 1991; 55: 359–366.

    Article  Google Scholar 

  39. Fuxe K, Grobecker H, Jonsson J. Effect of beta-phenylethylamine on central and peripheral monoamine-containing neurons. Eur J Pharmacol 1967; 2: 203–207.

    Google Scholar 

  40. Boulton AA. Phenylethylaminergic modulation of catecholaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 1991; 15: 139–156.

    Article  Google Scholar 

  41. Yoshida T, Yamada Y, Yamamoto T, Kuroiwa Y. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica 1986; 16: 129–136.

    Article  Google Scholar 

  42. Yoshida T, Oguro T, Kuroiwa Y. Hepatic and extrahepatic metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor of amphetamines in rats: sex and strain differences. Xenobiotica 1987; 17(8): 957–963.

    Article  Google Scholar 

  43. Meeker JE, Reynolds PC. Postmortem tissue methamphetamine concentrations following selegiline administration. J Anal Toxicol 1990; 14: 330–331.

    Article  Google Scholar 

  44. Schachter M, Marsden CD, Parkes JD, Jenner P, Testa B. Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. J Neurol Neurosurg Psych 1980; 93: 1016–1021.

    Article  Google Scholar 

  45. Heinonen EH, Myllylä V, Sotaniemi K et al. Pharmacokinetics and metabolism of selegiline. Acta Neurol Scand 1989; 126: 93–99.

    Google Scholar 

  46. Elsworth JD, Sandler M, Lees AJ, Ward C, Stern GM. The contribution of amphetamine metabolites of (—)-deprenyl to its antiparkinsonian properties. J Neural Transm 1982; 54: 105–110.

    Article  Google Scholar 

  47. Ariens EJ. Stereochemistry: A source of problems in medicinal chemistry. Med Res Rev 1986; 6: 451–466.

    Article  Google Scholar 

  48. Borbe HO, Niebch G, Nickel B. Kinetic evaluation of MAO-B-activity following oral administration of selegiline and desmethyl-selegiline in rat. J Neural Transm 1990; [Supplement] 32: 131–137.

    Google Scholar 

  49. Cedarbaum JM, Silvestri M, Clark M, Harts A, Kutt H. l-Deprenyl, levodopa pharmacokinetics, and response fluctuations in Parkinson’s disease. Clin Neuropharmacol 1990; 13(1): 29–35.

    Article  Google Scholar 

  50. Russ H, Gerlach M, Dettner O, Kuhn W, Przuntek H. (—)-Deprenyl treatment of patients with Parkinson’s disease does not affect erythrocyte catechol-O-methyl transferase activity. J Neural Transm 1991; 3: 215–223.

    Article  Google Scholar 

  51. Heinonen E, Lammintausta R. A review of the pharmacology of selegiline. Acta Neurol Scand 1991; 84 [Supplement] 136: 44–59.

    Article  Google Scholar 

  52. Pare CMB, Mousawi MA, Sandler M, Glover V. Attempts to attenuate the ‘cheese effect’. J Affective Disord 1985; 9: 137–141.

    Article  Google Scholar 

  53. Suchowersky O, de Vries J. Possible interactions between deprenyl and prozac. Can J Neurol Sci 1990; 17(3): 352–353.

    Google Scholar 

  54. Ciraulo DA, Shader RI. Fluoxetine drug-drug interactions. II. J Clin Psychopharmacol 1990; 10: 213–217.

    Google Scholar 

  55. Jounela AJ, Mattila M J, Knoll J. Interaction of selective inhibitors of monoamine oxidase with pethidine in rabbits. Biochem Pharmacol 1977; 26: 806–808.

    Article  Google Scholar 

  56. Boden R, Botting R, Coulson P, Spanswick G. Effect of nonselective and selective inhibitors of monoamine oxidases A and B on pethidine toxicity in mice. Br J Pharmacol 1984; 82: 151–154.

    Article  Google Scholar 

  57. Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline. Lancet 1991; 337: 246.

    Article  Google Scholar 

  58. Sechi G, Tanda F, Mutani R. Fatal hyperpyrexia after withdrawal of levodopa. Neurology 1984; 34: 249–251.

    Article  Google Scholar 

  59. Tojo K, Iizuka K, Honda H, Shimojo S, Miyahara T. A case of neuroleptic malignant syndrome due to levodopa withdrawal. Jikeikai Med J 1989; 36: 195–202.

    Google Scholar 

  60. Pfeiffer RF, Sucha EL. “On-off”-induced lethal hyperthermia. Mov Disord 1989; 4: 338–341.

    Article  Google Scholar 

  61. Reynolds GP, Riederer P, Sandler M, Jellinger K, Seeman D. Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (—)-deprenyl administration. J Neural Transm 1978; 43: 271–277.

    Article  Google Scholar 

  62. Karoum F, Chuang L-W, Eisler T et al. Metabolism of (—)-deprenyl to amphetamine and methamphetamine may be responsible for deprenyl’s therapeutic benefit: A biochemical assessment. Neurology 1982; 32: 503–509.

    Article  Google Scholar 

  63. Liebowitz MR, Karoum F, Quitkin FM et al. Biochemical effects ofl-deprenyl in atypical depressives. Biol Psychiatry 1985; 20: 558–565.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Heinonen, E.H., Anttila, M.I., Lammintausta, R.A.S. (1993). Pharmacokinetics and Clinical Pharmacology of Selegiline. In: Szelenyi, I. (eds) Inhibitors of Monoamine Oxidase B. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6348-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6348-3_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6349-0

  • Online ISBN: 978-3-0348-6348-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics