Anatomy of the Human Basal Ganglia

  • H. Braak
  • E. Braak
Part of the Milestones in Drug Therapy book series (MDT)


The limbic system exerts considerable influence on cortical areas and subcortical nuclei involved in the initiation, execution, and control of movements. Particularly dense projections to the accumbens nucleus and ventral striatum arise from the entorhinal region, hippocampal formation, and amygdala. The limbic data is transferred via the ventral pallidum and the mediodorsal thalamic nuclei to association areas of the frontal isocortex. This part of the frontal lobe is thought to initiate movements by influencing the dorsal striatum. From here, the information is transferred to both the external and internal segments of the pallidum. Eventually, the pallidal output reaches the anterior ventrolateral thalamic nuclei which relay data back to the cortex. The final loop includes the pons, cerebellum, and lower brain stem nuclei. Again, the thalamus integrates input and projects to cortical areas that contribute to the formation of corticonuclear and corticospinal fibers projecting down to the motor neurons of the lower brain stem and spinal cord (Figure 1).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nauta HJW. A proposed conceptual reorganization of the basal ganglia and telencephalon. Neuroscience 1979; 4: 1875–1881.CrossRefGoogle Scholar
  2. 2.
    Mehler WR. The basal ganglia — circa 1982. A review and commentary. Appl Neuro- physiol 1981; 44: 261–290.Google Scholar
  3. 3.
    Nauta WJH, Domesick VB. Afferent and efferent relationships of the basal ganglia. In: Evered D, O’Connor M, editors. Functions of the basal ganglia. CIBA foundation symposium, vol. 107. London: Pitman, 1984: 3–29.Google Scholar
  4. 4.
    Rolls ET. Information processing and basal ganglia function. In: Kennard C, Swash M, editors. Hierarchies in neurology. A reappraisal of a Jacksonian concept. London: Springer, 1989: 123–142.CrossRefGoogle Scholar
  5. 5.
    Brockhaus H. Zur feineren Anatomie des Septum und des Striatum. J Psychol Neurol 1942; 51: 1–56.Google Scholar
  6. 6.
    Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progr Brain Res 1990; 85: 119–146.CrossRefGoogle Scholar
  7. 7.
    Alheid GF, Heimer L, Switzer RC. Basal ganglia. In: Paxinos G, editor. The human nervous system. New York: Academic Press, 1990: 483–582.Google Scholar
  8. 8.
    Groenewegen H J, Berendse HW, Meredith GE, Haber SN, Voorn P, Wolters JG, Lohman AHM. Functional anatomy of the ventral, limbic system-innervated striatum. In: Willner P, Scheel-Krüger J, editors. The mesolimbic dopamine system: From motivation to action. Chichester: Wiley & Sons, 1991: 19–59.Google Scholar
  9. 9.
    Fox CA, Andrade AN, Hilman DE, Schwyn RC. The spiny neurons in the primate striatum: A Golgi and electron microscopic study. J Hirnforsch 1971; 13: 181–201.Google Scholar
  10. 10.
    Braak H, Braak E. Neuronal types in the striatum of man. Cell Tiss Res 1982; 227: 319–342.CrossRefGoogle Scholar
  11. 11.
    Graveland GA, Williams RS, DiFiglia M. A Golgi study of the human neostriatum: Neurons and afferent fibers. J Comp Neurol 1985; 234: 317–333.CrossRefGoogle Scholar
  12. 12.
    Yelnik J, Francois C, Percheron G, Tande D. Morphological taxonomy of the neurons of the primate striatum. J Comp Neurol 1991; 313: 273–294.CrossRefGoogle Scholar
  13. 13.
    DiFiglia M, Pasik P, Pasik T. A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 1976; 114: 245–256.CrossRefGoogle Scholar
  14. 14.
    Semba K, Fibiger HC, Vincent SR. Neurotransmitters in the mammalian striatum: Neuronal circuits and heterogeneity. Can J Neurol Sci 1987; 14: 386–394.Google Scholar
  15. 15.
    Groves PM. A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res Rev 1983; 5: 109–132.CrossRefGoogle Scholar
  16. 16.
    Bolam JP. Synapses of identified neurons in the neostriatum. In: Evered D, O’Connor M, editors. Functions of the basal ganglia. CIBA foundation symposium, vol. 107. London: Pitman, 1984: 30–47.Google Scholar
  17. 17.
    Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990; 13: 259–265.CrossRefGoogle Scholar
  18. 18.
    Gerfen CR. Synaptic organization of the striatum. J Electr Micr Techn 1988; 10: 265–81.CrossRefGoogle Scholar
  19. 19.
    Fox CA, Andrade AN, Schwyn RC, Rafols JA. The aspiny neurons and the glia in the primate striatum: A Golgi and electron microscopic study. J Hirnforsch 1971; 13: 341–362.Google Scholar
  20. 20.
    Pasik P, Pasik T, DiFiglia M. The internal organization of the neostriatum in mammals. In: Divac I, Berg RE, editors. The Neostriatum. Oxford: Pergamon Press 1979: 5–36.CrossRefGoogle Scholar
  21. 21.
    Martin LJ, Hadfield MG, Dellovade TL, Price DL. The striatal mosaic in primates: Patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum. Neuroscience 1991; 43: 397–417.CrossRefGoogle Scholar
  22. 22.
    Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 1990; 13: 244–254.CrossRefGoogle Scholar
  23. 23.
    Graybiel AM, Ragsdale CW. Biochemical anatomy of the striatum. In: Emson PC, editor. Chemical Neuroanatomy. New York: Raven Press, 1983: 427–504.Google Scholar
  24. 24.
    Johnston JG, Gerfen CR, Haber SN, van der Kooy D. Mechanisms of striatal pattern formation: Conservation of mammalian compartmentalization. Developm Brain Res 1990; 57: 93–102.CrossRefGoogle Scholar
  25. 25.
    Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci 1990; 13: 254–258.CrossRefGoogle Scholar
  26. 26.
    Graybiel AM. Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 1984; 13: 1157–1187.CrossRefGoogle Scholar
  27. 27.
    Graybiel AM. Neurochemically specified subsystems in the basal ganglia. In: Evered D, O’Connor M, editors. Functions of the basal ganglia. CIBA foundation symposium, vol. 107. London: Pitman, 1984: 114–149.Google Scholar
  28. 28.
    Giménez-Amaya JM, Graybiel AM. Compartmental origins of the striatopallidal projection in the primate. Neuroscience 1990; 34: 111–126.CrossRefGoogle Scholar
  29. 29.
    Haber SN, Lynd E, Klein C, Groenewegen HJ. Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study. J Comp Neurol 1990; 293: 282–298.CrossRefGoogle Scholar
  30. 30.
    Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Rev Neurosci 1986; 9: 367–381.Google Scholar
  31. 31.
    Goldman-Rakic PS, Selemon LD. Topography of corticostriatal projections in nonhu- man primates and implications for functional panellation of the neostriatum. In: Jones EG, Peters A, editors. Cerebral Cortex. Sensory-motor areas and aspects of cortical connectivity, vol. 5, New York: Plenum, 1986: 447–466.CrossRefGoogle Scholar
  32. 32.
    Nauta WJH. Circuitous connections linking cerebral cortex, limbic system, and corpus striatum. In: Doane BK, Livingston KE, editors. The limbic system. New York: Raven Press, 1986: 43–54.Google Scholar
  33. 33.
    Reiner A, Anderson KD. The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: Conclusions based on recent findings. Brain Res Rev 1990; 15: 251–265.CrossRefGoogle Scholar
  34. 34.
    Hedreen JC, DeLong MR. Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 1991; 304: 569–595.CrossRefGoogle Scholar
  35. 35.
    Fox CA, Andrade AN, LuQui IJ, Rafols JA. The primate globus pallidus: A Golgi and electron microscopic study. J Hirnforsch 1974; 15: 75–93.Google Scholar
  36. 36.
    Heimer L, Switzer RC, Van Hoesen GW. Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 1982; 5: 83–87.CrossRefGoogle Scholar
  37. 37.
    Francois C, Percheron G, Yelnik J, Heyner S. A Golgi analysis of the primate globus pallidus. I. Inconstant processes of larger neurons, other neuronal types and afferent axons. J Comp Neurol 1984; 227: 182–199.CrossRefGoogle Scholar
  38. 38.
    Beach TG, McGeer EG. The distribution of substance P in the primate basal ganglia: An immunohistochemical study of baboon and human brain. Neuroscience 1984; 13: 29–52.CrossRefGoogle Scholar
  39. 39.
    Haber SN, Watson SJ. The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 1985; 14: 1011–1024.CrossRefGoogle Scholar
  40. 40.
    Mai JK, Stephens PH, Hopf A, Cuello AC. Substance P in the human brain. Neuroscience 1986; 17: 709–739.CrossRefGoogle Scholar
  41. 41.
    Yelnik J, Percheron G. Subthalamic neurons in primates. A quantitative and comparative analysis. Neuroscience 1979; 4: 1717–1743.CrossRefGoogle Scholar
  42. 42.
    Rafols JA, Fox CA. The neurons in the primate subthalamic nucleus: A Golgi and electron microscopic study. J Comp Neurol 1976; 168: 75–112.CrossRefGoogle Scholar
  43. 43.
    Hassler R. Zur Normalanatomie der Substantia nigra. Versuch einer architektonischen Gliederung. J Psychol Neurol 1937; 48: 1–55.Google Scholar
  44. 44.
    Olszewski J, Baxter D. Cytoarchitecture of the human brain stem. Basel, New York: Karger, 1954.Google Scholar
  45. 45.
    Saper CB, Petito CK. Correspondence of melanin-pigmented neurons in the human brain with A1-A14 catecholamine cell groups. Brain 1982; 105: 87–102.CrossRefGoogle Scholar
  46. 46.
    Van Domburg PHMF, ten Donkelaar HJ. The human substantia nigra and ventral tegmental area. In: Beck F, Hild W, Kriz W, Pauly JE, Sano Y, Sano Y, Schiebler TH., editors. Advances in Anatomy, Embryology and Cell Biology, vol. 121. Berlin: Springer, 1991: 1–132.Google Scholar
  47. 47.
    Braak H, Braak E. Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Human Neurobiol 1986; 5: 71–82.Google Scholar
  48. 48.
    Jiminez-Castellanos J, Graybiel AM. Subdivisions of the primate substantia nigra pars compacta detected by acetylcholinesterase histochemistry. Brain Res 1987; 437: 349–354.CrossRefGoogle Scholar
  49. 49.
    Schwyn RC, Fox CA. The primate substantia nigra: A Golgi and electron microscopic study. J Hirnforsch 1974; 15: 95–126.Google Scholar
  50. 50.
    Yelnik J, Francois C, Percheron G, Heyner S. Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons. J Comp Neurol 1987; 265: 455–472.CrossRefGoogle Scholar
  51. 51.
    Francois C, Percheron G, Yelnik J, Heyner S. Demonstration of the existence of small local circuit neurons in the Golgi-stained primate substantia nigra. Brain Res 1979; 172: 160–164.CrossRefGoogle Scholar
  52. 52.
    Percheron G, Francois C, Yelnik J. Spatial organization and information processing in the core of the basal ganglia. In: Carpenter MB, Jayaraman A, editors. The basal ganglia II. New York: Plenum Publ. Corp., 1987: 205–226.CrossRefGoogle Scholar
  53. 53.
    Hikosaka O. Motor programming in basal ganglia. In: Ito M, editor. Neural programming. Basel: Karger, 1990: 101–109.Google Scholar
  54. 54.
    Jones EG. The thalamus. New York: Plenum Press, 1985.CrossRefGoogle Scholar
  55. 55.
    Strick PL. How do the basal ganglia and cerebellum gain access to the cortical motor areas? Behav Brain Res 1985; 18: 107–123.CrossRefGoogle Scholar
  56. 56.
    Haber SN. Neurotransmitters in the human and non-human primate basal ganglia. Human Neurobiol 1986; 5: 159–168.Google Scholar
  57. 57.
    Fénelon G, Francois C, Percheron G, Yelnik J. Topographic distribution of pallidal neurons projecting to the thalamus in macaques. Brain Res 1990; 520: 27–35.CrossRefGoogle Scholar
  58. 58.
    Ohm TG, Heilmann R, Braak H. The human oral raphe system. Architectonics and neuronal types in pigment-Nissl preparations. Anat Embryol 1989; 180: 37–43.CrossRefGoogle Scholar
  59. 59.
    Saper CB. Diffuse cortical projection systems: Anatomical organization and role in cortical function. In: Plum F, editor. Handbook of physiology. The nervous system, vol. V. Bethesda: American Physiological Society, 1987: 169–210.Google Scholar
  60. 60.
    Braak H, Braak E. Anatomy of the human hypothalamus (chiasmatic and tuberal region). Progr Brain Res. 1992; 93: in press.Google Scholar
  61. 61.
    Panula P, Airaksinen MS, Pirvola U, Kotilainen E. A histamine-containing neuronal system in human brain. Neuroscience 1990; 34: 127–132.CrossRefGoogle Scholar
  62. 62.
    Saper CB. Cholinergic system. In: Paxinos G, editor. The human nervous system. New York: Academic Press, 1990: 1095–1113.Google Scholar
  63. 63.
    Ulfig N. Configuration of the magnocellular nuclei in the basal forebrain of the human adult. Acta anat 1989; 134: 100–105.CrossRefGoogle Scholar
  64. 64.
    Hreib KK, Rosene DL, Moss MB. Basal forebrain efferents to the medial dorsal thalamic nucleus in the rhesus monkey. J Comp Neurol 1988; 277: 365–390.CrossRefGoogle Scholar
  65. 65.
    Mesulam MM, Mufson EJ. Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 1984; 107: 253–274.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1993

Authors and Affiliations

  • H. Braak
  • E. Braak

There are no affiliations available

Personalised recommendations