Quadrature Formulas Constructed by Using Certain Linear Positive Operators

  • D. D. Stancu
Part of the ISNM 57: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 57)


Let [a,b] be a compact interval of the real line IR. It is known that the classical theorem of Bohman-Korovkin states that in order that a sequence of positive linear operators (Lm), mapping into itself the space C[a,b] of continuous real-valued functions on [a,b], equipped with the uniform norm, to have the property that, for any f∈C[a,b], if m → ∞ we have lim Lmf = f, uniformly on [a,b], it is necessary and sufficient that such a convergence occur for a triplet of “test functions” from C[a,b], forming a so called Korovkin system. For C[a,b] the three monomials e0,e1,e2 where ej(x) := xj (j = 0,1,2), represent such a system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BRASS, H., Eine Verallgemeinerung der Bernsteinschen Operatoren. Abhandl. Math. Sem. Hamburg, 36 (1971),111–122.CrossRefGoogle Scholar
  2. 2.
    CHENEY, E.W., A. Sharma, Bernstein power series. Canad. J. Math., 16 (1964), 241–252.CrossRefGoogle Scholar
  3. 3.
    MOLDOVAN, G., Discrete convolutions and linear positive operators. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 15 (1972), 31–44.Google Scholar
  4. 4.
    POPOVICIU, T., Sur le reste dans certaines formules linéaires d’approximation de l’analyse. Mathematica (Cluj), 1(24) (1959), 95–142.Google Scholar
  5. 5.
    STANCU, D.D., Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl. 13 (1968), 1173–1194.Google Scholar
  6. 6.
    STANCU, D.D., On a generalization of the Bernstein polynomials. Studia Univ. Babes-Bolyai, Ser. Math.-Phys., 14 (1969), 31–45 (Rumanian).Google Scholar
  7. 7.
    STANCU, D.D., Use of linear interpolation for constructing a class of Bernstein polynomials. Studii Cercet. Matem. (Bucharest), 28 (1976), 369–379 (Rumanian).Google Scholar
  8. 8.
    STANCU, D.D., Approximation of functions by means of a new generalized Bernstein operator. (To appear).Google Scholar

Copyright information

© Springer Basel AG 1982

Authors and Affiliations

  • D. D. Stancu

There are no affiliations available

Personalised recommendations