In [2] ENGELS has shown that WILF’s quadrature is an interpolatory quadrature, i.e. it may be constructed by integration of a generalized HERMITE interpolation operator which interpolates the integration and its derivative. The connection between this operator and polynomial HERMITE interpolation is shown. This leads to a simple expression for the error of WILF’s quadrature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Engels H., Numerical Quadrature and Cubature. Academic Press, London, 1980.Google Scholar
  2. 2.
    Engels H., Über allgemeine Gauss’sche Quadraturen. Computing 10, 83–95 (1972).CrossRefGoogle Scholar
  3. 3.
    Markoff A., Sur la méthode de Gauss pour le calcul approché des intégrales. Math. Ann. 25, 427–432 (1885).CrossRefGoogle Scholar
  4. 4.
    Ralston A., A family of quadratures which achieve high accuracy in composite rules. J. Assoc. Comput. Mach. 6, 384–394 (1959).CrossRefGoogle Scholar
  5. 5.
    Steffensen J. F., Interpolation. Chelsea Publishing Company, New York, 1927.Google Scholar
  6. 6.
    Wilf H. S., Exactness conditions in numerical quadrature. Num. Math. 6, 315–319 (1961).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1982

Authors and Affiliations

  • Claus Schneider

There are no affiliations available

Personalised recommendations